Do you want to publish a course? Click here

Gemini-South + FLAMINGOS Demonstration Science: Near-Infrared Spectroscopy of the z=5.77 Quasar SDSS J083643.85+005453.3

109   0   0.0 ( 0 )
 Added by Daniel Stern
 Publication date 2003
  fields Physics
and research's language is English
 Authors Daniel Stern




Ask ChatGPT about the research

We report an infrared 1-1.8 micron (J+H-bands), low-resolution (R=450) spectrogram of the highest-redshift radio-loud quasar currently known, SDSS J083643.85+005453.3, obtained during the spectroscopic commissioning run of the FLAMINGOS multi-object, near-infrared spectrograph at the 8m Gemini-South Observatory. These data show broad emission from both CIV 1549 and CIII] 1909, with strengths comparable to lower-redshift quasar composite spectra. The implication is that there is substantial enrichment of the quasar environment, even at times less than a billion years after the Big Bang. The redshift derived from these features is z = 5.774 +/- 0.003, more accurate and slightly lower than the z = 5.82 reported in the discovery paper based on the partially-absorbed Lyman-alpha emission line. The infrared continuum is significantly redder than lower-redshift quasar composites. Fitting the spectrum from 1.0 to 1.7 microns with a power law f(nu) ~ nu^(-alpha), the derived power law index is alpha = 1.55 compared to the average continuum spectral index <alpha> = 0.44 derived from the first SDSS composite quasar. Assuming an SMC-like extinction curve, we infer a color excess of E(B-V) = 0.09 +/- 0.01 at the quasar redshift. Only approximately 6% of quasars in the optically-selected Sloan Digital Sky Survey show comparable levels of dust reddening.



rate research

Read More

145 - N. Araki , T. Nagao , K. Matsuoka 2012
We present near-infrared spectroscopy of the z=3.2 quasar SDSS J1707+6443, obtained with MOIRCS on the Subaru Telescope. This quasar is classified as a nitrogen-loud quasar because of the fairly strong NIII] and NIV] semi-forbidden emission lines from the broad-line region (BLR) observed in its rest-frame UV spectrum. However, our rest-frame optical spectrum from MOIRCS shows strong [OIII] emission from the narrow-line region (NLR) suggesting that, at variance with the BLR, NLR gas is not metal-rich. In order to reconcile these contradictory results, there may be two alternative possibilities; (1) the strong nitrogen lines from the BLR are simply due to a very high relative abundance of nitrogen rather than to a very high BLR metallicity, or (2) the BLR metallicity is not representative of the metallicity of the host galaxy, better traced by the NLR. In either case, the strong broad nitrogen lines in the UV spectrum are not indication of a chemically enriched host galaxy. We estimated the black hole mass and Eddington ratio of this quasar from the velocity width of both CIV and H_beta, that results in log(M_BH/M_sun) = 9.50 and log(L_bol/L_Edd) = -0.34. The relatively high Eddington ratio is consistent with our earlier result that strong nitrogen emission from BLRs is associated with high Eddington ratios. Finally, we detected significant [NeIII] emission from the NLR, implying a quite high gas density of n~10^6 cm^-3 and suggesting a strong coupling between quasar activity and dense interstellar clouds in the host galaxy.
We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048x2048-pixel HAWAII-2 0.9-2.4 mm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object laser-machined plates or 3 long slits for spectroscopy over a 6x2-arcminute field of view, and selectable grisms provide resolutions from $sim$ 1300 to $sim $3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3x1-arcminute field with high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-Instrument WaveFront Sensor subsystems. We also present the current status of the project, currently in final testing in mid-2006.
230 - C. Carilli 2007
We have detected emission by the CO 5-4 and 6-5 rotational transitions at $z = 5.7722pm 0.0006$ from the host galaxy of the SDSS quasar J0927+2001 using the Plateau de Bure interferometer. The peak line flux density for the CO 5-4 line is $0.72 pm 0.09$ mJy, with a line FWHM = $610 pm 110$ km s$^{-1}$. The implied molecular gas mass is $(1.6 pm 0.3) times 10^{10}$ M$_odot$. We also detect the 90 GHz continuum at $0.12 pm 0.03$ mJy, consistent with a 47K dust spectrum extrapolated from higher frequencies. J0927+2001 is the second example of a huge molecular gas reservoir within the host galaxy of a quasar within 1 Gyr of the big bang. Observations of J0927+2001 are consistent with a massive starburst coeval with a bright quasar phase in the galaxy, suggesting the rapid formation of both a super-massive black hole through accretion, and the stellar host spheroid, at a time close to the end of cosmic reionization.
We present Gemini near-infrared spectroscopic observations of six luminous quasars at z=5.8$sim$6.3. Five of them were observed using Gemini-South/GNIRS, which provides a simultaneous wavelength coverage of 0.9--2.5 $mu$m in cross dispersion mode. The other source was observed in K band with Gemini-North/NIRI. We calculate line strengths for all detected emission lines and use their ratios to estimate gas metallicity in the broad-line regions of the quasars. The metallicity is found to be supersolar with a typical value of $sim$4 Z_{sun}, and a comparison with low-redshift observations shows no strong evolution in metallicity up to z$sim$6. The FeII/MgII ratio of the quasars is 4.9+/-1.4, consistent with low-redshift measurements. We estimate central BH masses of 10^9 to 10^{10} M_{sun} and Eddington luminosity ratios of order unity. We identify two MgII $lambdalambda$2796,2803 absorbers with rest equivalent width W_0^{lambda2796}>1 AA at 2.2<z<3 and three MgII absorbers with W_0^{lambda2796}>1.5 AA at z>3 in the spectra, with the two most distant absorbers at z=4.8668 and 4.8823, respectively. The redshift number densities (dN/dz) of MgII absorbers with W_0^{lambda2796}>1.5 AA are consistent with no cosmic evolution up to z>4.
140 - Joon Hyeop Lee 2010
A near-infrared (NIR; 2.5 - 4.5 micron) spectroscopic survey of SDSS(Sloan Digital Sky Survey)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star-formation(SF)/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 micron PAH emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(Simple Stellar Population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent star formation or AGN activity and the BEGs have a clear feature of PAH emission, the evidence of current SF. BEGs show NIR features different from those of ULIRGs, from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert and LINER BEGs form an evolutionary sequence: SF - Seyfert - LINER.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا