Do you want to publish a course? Click here

Photometric Redshifts for Galaxies in the GOODS Southern Field

67   0   0.0 ( 0 )
 Added by Bahram Mobasher
 Publication date 2003
  fields Physics
and research's language is English
 Authors B. Mobasher




Ask ChatGPT about the research

We use extensive multi-wavelength photometric data from the Great Observatories Origins Deep Survey (GOODS) to estimate photometric redshifts for a sample of 434 galaxies with spectroscopic redshifts in the Chandra Deep Field South. Using the Bayesian method, which incorporates redshift/magnitude priors, we estimate photometric redshifts for galaxies in the range 18 < R (AB) < 25.5, giving an rms scatter of 0.11. The outlier fraction is < 10%, with the outlier-clipped rms being 0.047. We examine the accuracy of photometric redshifts for several, special sub--classes of objects. The results for extremely red objects are more accurate than those for the sample as a whole, with rms of 0.051 and very few outliers (3%). Photometric redshifts for active galaxies, identified from their X-ray emission, have a dispersion of 0.104, with 10% outlier fraction, similar to that for normal galaxies. Employing a redshift/magnitude prior in this process seems to be crucial in improving the agreement between photometric and spectroscopic redshifts.



rate research

Read More

We use the deepest and the most comprehensive photometric data currently available for GOODS-South galaxies to measure their photometric redshifts. The photometry includes VLT/VIMOS (U-band), HST/ACS (F435W, F606W, F775W, and F850LP bands), VLT/ISAAC (J-, H-, and Ks-bands), and four Spitzer/IRAC channels (3.6, 4.5, 5.8, and 8.0 micron). The catalog is selected in the z-band (F850LP) and photometry in each band is carried out using the recently completed TFIT algorithm, which performs PSF matched photometry uniformly across different instruments and filters, despite large variations in PSFs and pixel scales. Photometric redshifts are derived using the GOODZ code, which is based on the template fitting method using priors. The code also implements training of the template SED set, using available spectroscopic redshifts in order to minimize systematic differences between the templates and the SEDs of the observed galaxies. Our final catalog covers an area of 153 sq. arcmin and includes photometric redshifts for a total of 32,505 objects. The scatter between our estimated photometric and spectroscopic redshifts is sigma=0.040 with 3.7% outliers to the full z-band depth of our catalog, decreasing to sigma=0.039 and 2.1% outliers at a magnitude limit m(z)<24.5. This is consistent with the best results previously published for GOODS-S galaxies, however, the present catalog is the deepest yet available and provides photometric redshifts for significantly more objects to deeper flux limits and higher redshifts than earlier works. Furthermore, we show that the photometric redshifts estimated here for galaxies selected as dropouts are consistent with those expected based on the Lyman break technique.
We present deep $J$ and $H$-band images in the extended Great Observatories Origins Deep Survey-North (GOODS-N) field covering an area of 0.22 $rm{deg}^{2}$. The observations were taken using WIRCam on the 3.6-m Canada France Hawaii Telescope (CFHT). Together with the reprocessed $K_{rm s}$-band image, the $5sigma$ limiting AB magnitudes (in 2 diameter apertures) are 24.7, 24.2, and 24.4 AB mag in the $J$, $H$, and $K_{rm s}$ bands, respectively. We also release a multi-band photometry and photometric redshift catalog containing 93598 sources. For non-X-ray sources, we obtained a photometric redshift accuracy $sigma_{mathrm{NMAD}}=0.036$ with an outlier fraction $eta = 7.3%$. For X-ray sources, which are mainly active galactic nuclei (AGNs), we cross-matched our catalog with the updated 2M-CDFN X-ray catalog from Xue et al. (2016) and found that 658 out of 683 X-ray sources have counterparts. $GALEX$ UV data are included in the photometric redshift computation for the X-ray sources to give $sigma_{mathrm{NMAD}} = 0.040$ with $eta=10.5%$. Our approach yields more accurate photometric redshift estimates compared to previous works in this field. In particular, by adopting AGN-galaxy hybrid templates, our approach delivers photometric redshifts for the X-ray counterparts with fewer outliers compared to the 3D-HST catalog, which fit these sources with galaxy-only templates.
We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources ($sim 96%$). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are $4%$ and $5.4%$ respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.
We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. This corresponds to an rms scatter of 0.031, with a small number of outliers (<2.5%). We also find good agreement (rms=0.10) between photometric and spectroscopic redshifts for Type II AGNs. We compare results from our photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts for the entire COSMOS sample (to i < 25 mag.).
81 - C. Lidman , F. Ardila , M. Owers 2015
We present a catalogue containing the redshifts of 3,660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1,515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا