Do you want to publish a course? Click here

The Nuclear Structure of the Sagittarius Dwarf Spheroidal Galaxy

74   0   0.0 ( 0 )
 Added by Lorenzo Monaco
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the central parts of the Sagittarius dwarf spheroidal galaxy (Sgr). We found a clear overdensity of Sgrs stars around M~54 (hereafter NS). NS is well represented by a King model and it has the characteristics of a typical dwarf elliptical nucleus. Whether this means that M~54 has spiraled into the potential well of NS or that M~54 is the real nucleus and NS has formed into its potential wells, remains an open question to be addressed.



rate research

Read More

The identification of two new Planetary Nebulae in the Sagittarius Dwarf Spheroidal Galaxy (Sgr) is presented. This brings the total number to four. The first, StWr 2-21, belongs to the main body of Sgr. The second, the halo PN BoBn 1, has a location, distance and velocity in agreement with the leading tidal tail of Sgr. We estimate that 10 per cent of the Galactic halo consists of Sgr debris. The specific frequency of PNe indicates a total luminosity of Sgr, including its tidal tails, of M_V=-14.1. StWr 2-21 shows a high abundance of [O/H]=-0.23, which confirms the high-metallicity population in Sgr uncovered by Bonaficio et al. (2004). The steep metallicity--age gradient in Sgr is due to ISM removal during the Galactic plane passages, ISM reformation due to stellar mass loss, and possibly accretion of metal-enriched gas from our Galaxy. The ISM re-formation rate of Sgr, from stellar mass loss, is 5 X 10^-4 M_sun yr^-1, amounting to ~10^6 M_sun per orbital period. HST images reveal well-developed bipolar morphologies, and provide clear detections of the central stars. All three stars with deep spectra show WR-lines, suggesting that the progenitor mass and metallicity determines whether a PN central star develops a WR spectrum. One Sgr PN belongs to the class of IR-[WC] stars. Expansion velocities are determined for three nebulae. Comparison with hydrodynamical models indicates an initial density profile of rho ~ r^-3. This is evidence for increasing mass-loss rates on the AGB. Peak mass-loss rates are indicated of ~ 10^-4 M_sun yr^-1. The IR-[WC] PN, He 2-436, provides the sole direct detection of dust in a dwarf spheroidal galaxy, to date.
67 - L. Sbordone 2020
We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf Spheroidal Galaxy, by means of UVES high resolution spectra. The star, found in the outskirts of Sgr dSph, along the main body major axis, is a moderately metal poor giant (T$_{eff}$=4753 K, log g=1.75, [Fe/H]=-1.55), with [C/Fe]=1.13 placing it in the so-called high-carbon band, and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C and s-process enrichment.
91 - Slawomir Piatek 2002
This article studies the structure of the Draco dwarf spheroidal galaxy with an emphasis on the question of whether the spatial distribution of its stars has been affected by the tidal interaction with the Milky Way, using R- and V-band CCD photometry for eleven fields. The article reports coordinates for the center, a position angle of the major axis, and the ellipticity. It also reports the results of searches for asymmetries in the structure of Draco. These results, and searches for a ``break in the radial profile and for the presence of principal sequences of Draco in a color-magnitude diagram for regions more than 50 arcmin from the center, yield no evidence that tidal forces from the Milky Way have affected the structure of Draco.
We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
153 - Anirudh Chiti , Anna Frebel 2019
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of public photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا