No Arabic abstract
Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec 2002 - May 2003) of the nominal mission.
We present results based on the first INTEGRAL AGN catalogue. The catalogue includes 42 AGN, of which 10 are Seyfert 1, 17 are Seyfert 2, and 9 are intermediate Seyfert 1.5. The fraction of blazars is rather small with 5 detected objects, and only one galaxy cluster and no star-burst galaxies have been detected so far. The sample consists of bright (fx > 5e-12 erg/cm**2/s), low luminosity (L = 2e43 erg/s), local (z = 0.020) AGN. Although the sample is not flux limited, we find a ratio of obscured to unobscured AGN of 1.5 - 2.0, consistent with luminosity dependent unified models for AGN. Only four Compton-thick AGN are found in the sample. This implies that the missing Compton-thick AGN needed to explain the cosmic hard X-ray background would have to have lower fluxes than discovered by INTEGRAL so far.
Vista Variables in The Via Lactea (VVV) is an ESO variability survey that is performing observations in near infrared bands (ZYJHKs) towards the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than 2MASS. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZYJHKs photometry that covers 1.636 square degrees. We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZYJHKs) images. The galaxy candidates colors were also compared with the predicted ones by star counts models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Milennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii and ZYJHKs magnitudes is provided, as well as comparisons of the results with other surveys of galaxies towards Galactic plane.
We report on INTEGRAL/IBIS observations of the Vela region during a Galactic Plane Scan (hereafter GPS) presenting the IBIS in-flight performances during these operations. Among all the known sources in the field of view we clearly detect 4U 0836-429, Vela X-1, Cen X-3, GX 301-2, 1E 1145.1-6141, and H0918-549 in the 20-40 keV energy range. Only Vela X-1 and GX 301-2 are detected in the 40-80 keV energy range, and no sources are visible above. We present the results of each individual observation (~2200 s exposure), as well as those from the mosaic of these scans.
We present results on approximately one year of INTEGRAL observations of six AGN detected during the regular scans of the Galactic Plane. The sample is composed by five Seyfert 2 objects (MCG -05-23-16, NGC 4945, the Circinus galaxy, NGC 6300, ESO 103-G35) and the radio galaxy Centaurus A. The continuum emission of each of these sources is well represented by a highly absorbed (NH > 1e22 1/cm^2) power law, with average spectral index Gamma = 1.9 +/- 0.3. A high energy exponential cut-off at Ec ~ 50 keV is required to fit the spectrum of the Circinus galaxy, whereas a lower limit of 130 keV has been found for NGC 4945 and no cut-off has been detected for NGC 6300 in the energy range covered by these INTEGRAL data. The flux of Centaurus A was found to vary by a factor of ~ 2 in 10 months, showing a spectral change between the high and low state, which can be modelled equally well by a change in the absorption (NH from 17e22 to 33e22 1/cm^2) or by the presence of a cut-off at >~ 120 keV in the low state spectrum. A comparison with recently reprocessed BeppoSAX/PDS data shows a general agreement with INTEGRAL results. The high energy cut-off in the hard X-ray spectra appears to be a common but not universal characteristic of Seyfert 2 and to span a wide range of energies.
The center of our Galaxy is a known strong source of electron-positron 511-keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| > 40 deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.