No Arabic abstract
Vista Variables in The Via Lactea (VVV) is an ESO variability survey that is performing observations in near infrared bands (ZYJHKs) towards the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than 2MASS. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZYJHKs photometry that covers 1.636 square degrees. We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZYJHKs) images. The galaxy candidates colors were also compared with the predicted ones by star counts models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Milennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii and ZYJHKs magnitudes is provided, as well as comparisons of the results with other surveys of galaxies towards Galactic plane.
Suzaku and Chandra X-ray observations detected a new cluster of galaxies, Suzaku J1759-3450, at a redshift z=0.13. It is located behind the Milky Way, and the high Galactic dust extinction renders it nearly invisible at optical wavelengths. We attempt here to confirm the galaxy cluster with near-infrared imaging observations, and to characterize its central member galaxies. Images from the VVV survey were used to detect candidate member galaxies of Suzaku J1759-3450 within the central region of the cluster, up to 350 kpc from the X-ray peak emission. Color-magnitude and color-color diagrams and morphology criteria allowed us to select the galaxies among the numerous foreground sources. Fifteen candidate cluster members were found very close to a modeled red-sequence at the redshift of the cluster. Five members are extremely bright, and one is possibly a cD galaxy. The asymmetry in the spatial distribution of the galaxies respect to the X-ray peak emission is an indicator of that this cluster is still suffering a virialization process. Our investigation of Suzaku J1759-3450 demonstrates the potential of the VVV Survey to study the hidden population of galaxies in the Zone of Avoidance.
Deep near-IR images from the VISTA Variables in the Via Lactea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the 4$^{rm th}$ Galactic quadrant ($295deg < l < 350deg$, $-2.24deg < b < -1.05deg$). The samples distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyrae population does not extend beyond $l sim340 deg$, and the samples spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.
Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec 2002 - May 2003) of the nominal mission.
Vista Variables in the Via Lactea (VVV) is an ESO Public Survey that is performing a variability survey of the Galactic bulge and part of the inner disk using ESOs Visible and Infrared Survey Telescope for Astronomy (VISTA). The survey covers 520 deg^2 of sky area in the ZYJHK_S filters, for a total observing time of 1929 hours, including ~ 10^9 point sources and an estimated ~ 10^6 variable stars. Here we describe the current status of the VVV Survey, in addition to a variety of new results based on VVV data, including light curves for variable stars, newly discovered globular clusters, open clusters, and associations. A set of reddening-free indices based on the ZYJHK_S system is also introduced. Finally, we provide an overview of the VVV Templates Project, whose main goal is to derive well-defined light curve templates in the near-IR, for the automated classification of VVV light curves.
Recent near-IR Surveys have discovered a number of new bulge globular cluster (GC) candidates that need to be further investigated. Our main objective is to use public data from the Gaia Mission, VVV, 2MASS and WISE in order to measure the physical parameters of Minni48, a new candidate GC located in the inner bulge of the Galaxy at l=359.35 deg, b=2.79 deg. Even though there is a bright foreground star contaminating the field, the cluster appears quite bright in near- and mid-IR images. We obtain deep decontaminated optical and near-IR colour-magnitude diagrams (CMDs) for this cluster. The heliocentric cluster distance is determined from the red clump (RC) and the red giant branch (RGB) tip magnitudes in the near-IR CMD, while the cluster metallicity is estimated from the RGB slope and the fit to theoretical isochrones. The GC size is found to be r = 6 +/- 1, while reddening and extinction values are E(J-Ks)=0.60 +/- 0.05 mag, A_G=3.23 +/- 0.10 mag, A_Ks=0.45 +/- 0.05 mag. The resulting mean Gaia proper motions are PMRA=-3.5 +/- 0.5 mas/yr, PMDEC=-6.0 +/- 0.5 mas/yr. The IR magnitude of the RC yields an accurate distance modulus estimate of (m-M)_0=14.61 mag, equivalent to a distance D=8.4 +/- 1.0 kpc. This is consistent with the optical distance estimate: (m-M)_0=14.67 mag, D=8.6 +/- 1.0 kpc, and with the RGB tip distance: (m-M)_0=14.45 mag, D=7.8 +/- 1.0 kpc. The derived metallicity is [Fe/H]=-0.20 +/- 0.30 dex. A good fit to the PARSEC stellar isochrones is obtained in all CMDs using Age = 10 +/- 2 Gyr. The total absolute magnitude of this GC is estimated to be M_Ks= -9.04 +/- 0.66 mag. Based on its position, kinematics, metallicity and age, we conclude that Minni48 is a genuine GC, similar to other well known metal-rich bulge GCs. It is located at a projected Galactocentric angular distance of 2.9 deg, equivalent to 0.4 kpc, being one of the closest GCs to the Galactic centre.