Do you want to publish a course? Click here

A peculiar type-I X-ray burst from GRS 1747-312

94   0   0.0 ( 0 )
 Added by Jean in 't Zand
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the serendipitous detection with the Rossi X-ray Timing Explorer of a long and peculiar X-ray burst whose localization is consistent with one known X-ray burster (GRS 1747-312) and which occurred when that source was otherwise quiescent. The peculiar feature concerns a strong radius expansion of the neutron star photosphere, which occurred not within a few seconds from the start of the burst, as is standard in radius-expansion bursts, but 20 s later. This suggests that two different layers of the neutron star may have undergone thermonuclear runaways: a hydrogen-rich and a hydrogen-poor layer. The reason for the delay may be related to the source being otherwise quiescent.



rate research

Read More

GRS 1747$-$312 is a neutron star Low-Mass X-ray Binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS 1747$-$312 was found to be in a low luminosity state with $L_{rm x} sim 1.2 times 10^{35}$ erg s$^{-1}$. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS 1747$-$312. When GRS 1747$-$312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS 1747$-$312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material ($N_{rm H} > 10^{24}$ cm$^{-2}$ ) between the neutron star and the companion star, though the origin of the thick material is not clear.
We studied the transient neutron-star low-mass X-ray binary GRS 1747-312, located in the globular cluster Terzan 6, in its quiescent state after its outburst in August 2004, using an archival XMM-Newton observation. A source was detected in this cluster and its X-ray spectrum can be fitted with the combination of a soft, neutron-star atmosphere model and a hard, power-law model. Both contributed roughly equally to the observed 0.5-10 keV luminosity (~4.8X10^33 erg/s). This type of X-ray spectrum is typically observed for quiescent neutron-star X-ray transients that are perhaps accreting in quiescence at very low rates. Therefore, if this X-ray source is the quiescent counterpart of GRS 1747-312, then this source is also accreting at low levels in-between outbursts. Since source confusion a likely problem in globular clusters, it is quite possible that part, if not all, of the emission we observed is not related to GRS 1747-312, and is instead associated with another source or conglomeration of sources in the cluster. Currently, it is not possible to determine exactly which part of the emission truly originates from GRS 1747-312, and a Chandra observation (when no source is in outburst in Terzan 6) is needed to be conclusive. Assuming that the detected emission is due to GRS 1747-312, we discuss the observed results in the context of what is known about other quiescent systems. We also investigated the thermal evolution of the neutron star in GRS 1747-312, and inferred that GRS 1747-312 can be considered a typical quiescent system under our assumptions.
We present analysis of two type-I X-ray bursts observed by NuSTAR originating from the very faint transient neutron star low-mass X-ray binary GRS 1741.9-2853 during a period of outburst in May 2020. We show that the persistent emission can be modeled as an absorbed, Comptonized blackbody in addition to Fe K$alpha$ emission which can be attributed to relativistic disk reflection. We measure a persistent bolometric, unabsorbed luminosity of $L_{mathrm{bol}}=7.03^{+0.04}_{-0.05}times10^{36},mathrm{erg,s^{-1}}$, assuming a distance of 7 kpc, corresponding to an Eddington ratio of $4.5%$. This persistent luminosity combined with light curve analysis leads us to infer that the bursts were the result of pure He burning rather than mixed H/He burning. Time-resolved spectroscopy reveals that the bolometric flux of the first burst exhibits a double-peaked structure, placing the source within a small population of accreting neutron stars which exhibit multiple-peaked type-I X-ray bursts. We find that the second, brighter burst shows evidence for photospheric radius expansion (PRE) and that at its peak, this PRE event had an unabsorbed bolometric flux of $F_{mathrm{peak}}=2.94^{+0.28}_{-0.26}times10^{-8},mathrm{erg,cm^{-2},s^{-1}}$. This yields a new distance estimate of $d=9.0pm0.5$ kpc, assuming that this corresponds to the Eddington limit for pure He burning on the surface of a canonical neutron star. Additionally, we performed a detailed timing analysis which failed to find evidence for quasiperiodic oscillations or burst oscillations, and we place an upper limit of $16%$ on the rms variability around 589 Hz, the frequency at which oscillations have previously been reported.
Fast radio bursts are bright, millisecond-scale radio flashes of yet unknown physical origin. Recently, their extragalactic nature has been demonstrated and an increasing number of the sources have been found to repeat. Young, highly magnetized, isolated neutron stars - magnetars - have been suggested as the most promising candidates for fast radio burst progenitors owing to their energetics and high X-ray flaring activity. Here we report the detection with the Konus-Wind of a hard X-ray event of April 28, 2020, temporarily coincident with a bright, two-peak radio burst from the Galactic magnetar SGR~1935+2154 with properties remarkably similar to those of fast radio bursts. We show that two peaks of the double-peaked X-ray burst coincide in time with the radio peaks, confirming that the X-ray and radio emission most likely have a common origin. Thus, this is the first simultaneous detection of a fast radio burst from a Galactic magnetar and its high-energy counterpart. The total energy emitted in X-rays in this burst is typical of bright short magnetar bursts, but an unusual hardness of its energy spectrum strongly distinguish the April 28 event among multiple ordinary flares detected from SGR~1935+2154 previously. This, and a recent non-detection of radio emission from about one hundred typical soft bursts from SGR 1935+2154 favors the idea that bright, FRB-like magnetar signals are associated with rare, hard-spectrum X-ray bursts, which implied rate ($sim$ 0.04 yr$^{-1}$ magnetar$^{-1}$) appears consistent with the rate estimate of SGR 1935+2154-like radio bursts (0.007 - 0.04 yr$^{-1}$ magnetar$^{-1}$).
We use two-dimensional, general relativistic, viscous, radiation hydrodynamic simulations to study the impact of a Type I X-ray burst on a hot and geometrically thick accretion disk surrounding an unmagnetized, non-rotating neutron star. The disk is initially consistent with a system in its low/hard spectral state, and is subject to a burst which rises to a peak luminosity of $10^{38}$ erg s$^{-1}$ in $2.05$ s. At the peak of the burst, the temperature of the disk has dropped by more than three orders of magnitude and its scale height has gone down by more than one order of magnitude. The simulations show that these effects predominantly happen due to Compton cooling of the hot plasma, and clearly illustrate the potential cooling effects of bursts on accretion disk coronae. In addition, we demonstrate the presence of Poynting-Robertson drag, though it only enhances the mass accretion rate onto the neutron star by a factor of $sim 3$-$4$ compared to a simulation with no burst. Simulations such as these are important for building a general understanding of the response of an accretion disk to an intense X-ray impulse, which, in turn, will be crucial for deciphering burst spectra. Detailed analysis of such spectra offers the potential to measure neutron star radii, and hence constrain the neutron star equation of state, but only if the contributions coming from the impacted disk and its associated corona can be understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا