Do you want to publish a course? Click here

Photospheric Radius Expansion and a double-peaked type-I X-ray burst from GRS 1741.9-2853

227   0   0.0 ( 0 )
 Added by Sean Pike
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present analysis of two type-I X-ray bursts observed by NuSTAR originating from the very faint transient neutron star low-mass X-ray binary GRS 1741.9-2853 during a period of outburst in May 2020. We show that the persistent emission can be modeled as an absorbed, Comptonized blackbody in addition to Fe K$alpha$ emission which can be attributed to relativistic disk reflection. We measure a persistent bolometric, unabsorbed luminosity of $L_{mathrm{bol}}=7.03^{+0.04}_{-0.05}times10^{36},mathrm{erg,s^{-1}}$, assuming a distance of 7 kpc, corresponding to an Eddington ratio of $4.5%$. This persistent luminosity combined with light curve analysis leads us to infer that the bursts were the result of pure He burning rather than mixed H/He burning. Time-resolved spectroscopy reveals that the bolometric flux of the first burst exhibits a double-peaked structure, placing the source within a small population of accreting neutron stars which exhibit multiple-peaked type-I X-ray bursts. We find that the second, brighter burst shows evidence for photospheric radius expansion (PRE) and that at its peak, this PRE event had an unabsorbed bolometric flux of $F_{mathrm{peak}}=2.94^{+0.28}_{-0.26}times10^{-8},mathrm{erg,cm^{-2},s^{-1}}$. This yields a new distance estimate of $d=9.0pm0.5$ kpc, assuming that this corresponds to the Eddington limit for pure He burning on the surface of a canonical neutron star. Additionally, we performed a detailed timing analysis which failed to find evidence for quasiperiodic oscillations or burst oscillations, and we place an upper limit of $16%$ on the rms variability around 589 Hz, the frequency at which oscillations have previously been reported.



rate research

Read More

132 - G. Trap , M. Falanga , A. Goldwurm 2009
The neutron star low-mass X-ray binary GRS 1741.9-2853 is a known type-I burster of the Galactic Center. It is transient, faint, and located in a very crowded region, only 10 arcmin from the supermassive black hole Sgr A*. Therefore, its bursting behavior has been poorly studied so far. In particular, its persistent emission has rarely been detected between consecutive bursts, due to lack of sensitivity or confusion. This is what made GRS 1741.9-2853 one of the nine burst-only sources identified by BeppoSAX a few years ago. The physical properties of GRS 1741.9-2853 bursts are yet of great interest since we know very little about the nuclear regimes at stake in low accretion rate bursters. We examine here for the first time several bursts in relation with the persistent emission of the source, using INTEGRAL, XMM-Newton, and Swift observations. We investigate the source flux variability and bursting behavior during its 2005 and 2007 long outbursts. The persistent luminosity of GRS 1741.9-2853 varied between ~1.7 and 10.5 10^36 erg s^-1, i.e. 0.9-5.3% of the Eddington luminosity. The shape of the spectrum as described by an absorbed power-law remained with a photon index Gamma ~ 2 and a column density $N_{rm H} ~ 12 10^22 cm^-2 throughout the outbursts. We discovered 11 type-I bursts with INTEGRAL, and inspected 4 additional bursts: 2 recorded by XMM-Newton and 2 by Swift. From the brigthest burst, we derive an upper limit on the source distance of ~7 kpc. The observed bursts characteristics and source accretion rate suggest pure helium explosions igniting at column depths y_{ign} ~ 0.8-4.8 10^8 g cm^-1, for typical energy releases of ~1.2-7.4 10^39 erg.
We report the serendipitous detection with the Rossi X-ray Timing Explorer of a long and peculiar X-ray burst whose localization is consistent with one known X-ray burster (GRS 1747-312) and which occurred when that source was otherwise quiescent. The peculiar feature concerns a strong radius expansion of the neutron star photosphere, which occurred not within a few seconds from the start of the burst, as is standard in radius-expansion bursts, but 20 s later. This suggests that two different layers of the neutron star may have undergone thermonuclear runaways: a hydrogen-rich and a hydrogen-poor layer. The reason for the delay may be related to the source being otherwise quiescent.
On August 24th 2008 the new magnetar SGR 0501+4516 (discovered by SWIFT) emitted a bright burst with a pronounced double-peak structure in hard X-rays, reminiscent of the double-peak temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts, despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24th burst.
We examined the maximum bolometric peak luminosities during type I X-ray bursts from the persistent or transient luminous X-ray sources in globular clusters. We show that for about two thirds of the sources the maximum peak luminosities during photospheric radius expansion X-ray bursts extend to a critical value of (3.79+/-0.15)x10^{38} erg/s, assuming the total X-ray burst emission is entirely due to black-body radiation and the recorded maximum luminosity is the actual peak luminosity. This empirical critical luminosity is consistent with the Eddington luminosity limit for hydrogen poor material. Since the critical luminosity is more or less always reached during photospheric radius expansion X-ray bursts (except for one source), such bursts may be regarded as empirical standard candles. However, because significant deviations do occur, our standard candle is only accurate to within 15%. We re-evaluated the distances to the twelve globular clusters in which the X-ray bursters reside.
We use archival data from the Rossi X-Ray Timing Explorer to examine 125 type I X-ray bursts from the 9 weakly magnetic accreting neutron stars where millisecond oscillations have been detected during some bursts. We find that oscillations from the 6 fast (approximately 600 Hz) sources are almost always observed during radius expansion bursts, whereas oscillations from the 3 slow (about 300 Hz) sources are about equally likely to be found in bursts both with and without photospheric radius expansion. This strongly suggests that the distinction between these two source groups cannot be an observational selection effect, but must instead arise from some physical mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا