Do you want to publish a course? Click here

Eddington Accretion and QSO Emission Lines at z ~ 2

112   0   0.0 ( 0 )
 Added by Juntao Yuan
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Broad Absorption Line (BAL) QSOs have been suggested to be youthful super-accretors based on their powerful radiatively driven absorbing outflows and often reddened continua. To test this hypothesis, we observed near IR spectra of the H$beta$ region for 11 bright BAL QSOs at redshift z ~ 2. We measured these and literature spectra for 6 BAL QSOs, 13 radio-loud and 7 radio-quiet non-BAL QSOs. Using the luminosity and H$beta$ broad line width to derive black hole mass and accretion rate, we find that both BAL and non-BAL QSOs at z ~ 2 tend to have higher $L/L_{Edd}$ than those at low z -- probably a result of selecting the brightest QSOs. However, we find that the high z QSOs, in particular the BAL QSOs, have extremely strong Fe II and very weak [O III], extending the inverse relationship found for low z QSOs. This suggests that, even while radiating near $L_{Edd}$, the BAL QSOs have a more plentiful fuel supply than non-BAL QSOs. Comparison with low z QSOs shows for the first time that the inverse Fe II -- [O III] relationship is indeed related to $L/L_{Edd}$, rather than black hole mass.



rate research

Read More

We investigate the 3-D matter distribution at z~2 with high resolution (R ~ 40000) spectra of QSO pairs and groups obtained with the UVES spectrograph at ESO VLT. Our sample is unique for the number density of objects and the variety of separations, between 0.5 and 7 proper Mpc. We compute the real space cross-correlation function of the Lyman-alpha forest transmitted fluxes. There is a significant clustering signal up to ~2 proper Mpc, which is still present when absorption lines with high column density (log N > 13.8) are excluded.
We report an optical detection of an extended structure around a QSO at z=6.43 (CFHQSJ2329-0301, the highest redshift QSO currently known) in deep z and z_r-band images of the Subaru/Suprime-Cam. After a careful PSF (QSO) subtraction, a structure in the z-band extends more than 4 on the sky (R_e=11 kpc), and thus, is well-resolved (16sigma detection). The PSF-subtracted z_r-band structure is in a similar shape to that in the z-band, but less significant with a 3 sigma detection. In the z-band, a radial profile of the QSO+host shows a clear excess over that of the averaged PSF in 0.8-3 radius. Since the z-band includes a Lya emission at z=6.43, the z flux is perhaps a mixture of the host (continuum light) and its Lya emission, whereas the z_r-band flux is from the host. Through a SED modeling, we estimate 40% of the PSF-subtracted z-band light is from the host (continuum) and 60% is from Lya emission. The absolute magnitude of the host is M_{1450}=-23.9 (c.f. M_{1450}=-26.4 for the QSO). A lower limit of the SFR(Lya) is 1.6 Msun yr^{-1} with stellar mass ranging 6.2 x 10^8 to 1.1 x 10^10 Msun when 100 Myrs of age is assumed. The detection shows that a luminous QSO is already harbored by a large, star-forming galaxy in the early Universe only after ~840 Myr after the big bang. The host may be a forming giant galaxy, co-evolving with a super massive black hole.
67 - Scott Croom 2004
We present results of a Gemini adaptive optics (AO) imaging program to investigate the host galaxies of typical QSOs at z~2. Our aim is to study the host galaxies of typical, L*_qso QSOs at the epoch of peak QSO and star formation activity. The large database of faint QSOs provided by the 2dF QSO Redshift Survey allows us to select a sample of QSOs at z=1.75-2.5 which have nearby (<12 arcsecond separation) bright stars suitable for use as AO guide stars. We have observed a sample of 9 QSOs. The images of these sources have AO corrected full-width at half-maximum of between 0.11 and 0.25 arcseconds. We use multiple observations of point spread function (PSF) calibration star pairs in order to quantify any uncertainty in the PSF. We then factored these uncertainties into our modelling of the QSO plus host galaxy. In only one case did we convincingly detect a host (2QZ J133311.4+001949, at z=1.93). This host galaxy has K=18.5+-0.2 mag with a half-light radius, r_e=0.55+-0.1, equivalent to ~3L*_gal assuming a simple passively evolving model. From detailed simulations of our host galaxy modelling process, we find that for four of our targets we should be sensitive to host galaxies that are equivalent to ~2L*_gal (passively evolved). Our non-detections therefore place tight constraints on the properties of L*_qso QSO host galaxies, which can be no brighter (after allowing for passive evolution) than the host galaxies of L*_qso AGN at low redshift, although the QSOs themselves are a factor of ~50 brighter. This implies that either the fueling efficiency is much greater at high redshift, or that more massive black holes are active at high redshift.
We present deep spectroscopy of 17 very low mass (M* ~ 2.0x10^6 Msun to 1.4x10^9 Msun) and low luminosity (M_UV ~ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z~1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous lines (NIV], OIII], CIV, Si III], CIII]) which are rarely seen in individual spectra of more massive star forming galaxies. CIII] is detected in 16 of 17 low mass star forming systems with rest-frame equivalent widths as large as 13.5 Angstroms. Nebular CIV emission is present in the most extreme CIII] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal poor gas and stars, young stellar populations, and large ionization parameters. The young ages implied by the emission lines and continuum SEDs indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colors, and large sSFRs of our sample are similar to those of typical z>6 galaxies. Given the strong attenuation of Ly-alpha in z>6 galaxies we suggest that CIII] is likely to provide our best probe of early star forming galaxies with ground-based spectrographs and one of the most efficient means of confirming z>10 galaxies with the James Webb Space Telescope.
188 - Tomotsugu Goto 2011
We have taken a deep, moderate-resolution Keck/Deimos spectra of QSO, CFHQS2329, at z=6.4. At the wavelength of Lya, the spectrum shows a spatially-extended component, which is significantly more extended than a stellar spectrum, and also a continuum part of the spectrum. The restframe line width of the extended component is 21+-7 A, and thus smaller than that of QSO (52+-4 A), where they should be identical if the light is incomplete subtraction of the QSO component. Therefore, these comparisons argue for the detection of a spatially extended Lya nebulae around this QSO. This is the first z>6 QSO that an extended Lya halo has been observed around. Careful subtraction of the central QSO spectrum reveals a lower limit to the Lya luminosity of (1.7+-0.1)x 10^43 erg s^-1. This emission may be from the theoretically predicted infalling gas in the process of forming a primordial galaxy that is ionized by a central QSO. On the other hand, if it is photoionized by the host galaxy, an estimated star-formation rate of >3.0 Msun yr^-1 is required. If we assume the gas is virialized, we obtain dynamical mass estimate of Mdyn=1.2x10^12 Msun. The derived MBH/Mhost is 2.1x10^-4, which is two orders smaller than those from more massive z~6 QSOs, and places this galaxy in accordance with the local M-sigma relation, in contrast to a previous claim on the evolution of M-sigma relation at z~6. We do not claim evolution or non-evolution of the M-sigma relation based on a single object, but our result highlights the importance of investigating fainter QSOs at z~6.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا