Do you want to publish a course? Click here

The X-ray afterglow of GRB030329

56   0   0.0 ( 0 )
 Added by Tiengo Andrea
 Publication date 2003
  fields Physics
and research's language is English
 Authors A. Tiengo




Ask ChatGPT about the research

We report on XMM-Newton and Rossi-XTE observations of the bright (fluence $sim$ 10$^{-4}$ erg cm$^{-2}$) and nearby (z=0.1685) Gamma-Ray Burst GRB030329 associated to SN2003dh. The first Rossi-XTE observation, 5 hours after the burst, shows a flux decreasing with time as a power law with index 0.9$pm$0.3. Such a decay law is only marginally consistent with a further Rossi-XTE measurement (at t-t$_{GRB}sim$30 hr). Late time observations of this bright afterglow at X-ray wavelengths have the advantage, compared to optical observations, of not being affected by contributions from the supernova and host galaxy. A first XMM-Newton observation, at t-t$_{GRB}sim$37 days, shows a flux of 4$times10^{-14}$ erg cm$^{-2}$ s$^{-1}$ (0.2-10 keV). The spectrum is a power law with photon index $Gamma$=1.9 and absorption $<2.5times10^{20}$ cm$^{-2}$, consistent with the Galactic value. A further XMM-Newton pointing at t-t$_{GRB}sim$61 days shows a flux fainter by a factor $sim$2. The combined Rossi-XTE and XMM-Newton measurements require a break at t$sim$0.5 days in the afterglow decay, with a power law index increasing from 0.9 to 1.9, similar to what is observed in the early part of the optical afterglow. The extrapolation of the XMM-Newton spectra to optical frequencies lies a factor of $sim10$ below simultaneous measurements. This is likely due to the presence of SN2003dh.



rate research

Read More

53 - A. Tiengo 2004
Thanks to its extraordinary brightness, the X-ray afterglow of GRB030329 could be studied by XMM-Newton up to two months after the prompt Gamma-ray emission. We present the results of two XMM-Newton observations performed on May 5 and 29, as well as an analysis of the Rossi-XTE data of the early part of the afterglow, discussing in particular the stability of the X-ray spectrum and presenting upper limits on the presence of X-ray emission lines.
Extensive X-ray, optical and radio observations of the bright afterglow of the Gamma Ray Burst GRB 030329 are used to construct the multi-frequency evolution of the event. The data are fitted using the standard fireball shock model to provide estimates of the initial energy, epsilon = 6.8 x 10^52 ergs sr^-1, the density of the ambient medium, n_0 = 1 cm^-3, the electron and magnetic energy density fractions, epsilon_e = 0.24 & epsilon_B = 0.0017, the power law index of the relativistic electron spectrum, p = 2.25, and the opening angle of the jet, theta_j = 3 degrees. Deviations from the standard model seen in the optical and radio are most likely attributable to the concurrent hypernova SN2003dh. Peaks at 0.23 and 1.7 days in the R-band are much brighter than expected from a standard SN, and there is a large radio excess over the expected afterglow flux for t>2 days. No deviation from the best-fit afterglow model is seen in the X-ray decline, indicating that the excess optical and radio flux from 1-5 days arises from a later injection of slower electrons by the central engine.
We present radio, millimeter and optical observations of the afterglow of GRB030329. UBVR_{C}I_{C} photometry is presented for a period of 3 hours to 34 days after the burst. Radio monitoring at 1280 MHz has been carried out using the GMRT for more than a year. Simultaneous millimeter observations at 90 GHz and 230 GHz have been obtained from the Swedish-ESO Submillimeter Telescope (SEST) and the IRAM-PdB interferometer over more than a month following the burst. We use these data to constrain the double jet model proposed by Berger et al. (2003) for this afterglow. We also examine whether instead of the two jets being simultaneously present, the wider jet could result from the initially narrow jet, due to a fresh supply of energy from the central engine after the ``jet break.
147 - Dirk Grupe 2009
We report on 5 Chandra observations of the X-ray afterglow of the Gamma-Ray Burst GRB 060729 performed between 2007 March and 2008 May. In all five observations the afterglow is clearly detected. The last Chandra pointing was performed on 2008-May-04, 642 days after the burst - the latest detection of a GRB X-ray afterglow ever. A reanalysis of the Swift XRT light curve together with the three detections by Chandra in 2007 reveals a break at about 1.0 Ms after the burst with a slight steepening of the decay slope from alpha = 1.32 to 1.61. This break coincides with a significant hardening of the X-ray spectrum, consistent with a cooling break in the wind medium scenario, in which the cooling frequency of the afterglow crosses the X-ray band. The last two Chandra observations in 2007 December and 2008 May provide evidence for another break at about one year after the burst. If interpreted as a jet break, this late-time break implies a jet half opening angle of about 14 degrees for a wind medium. Alternatively, this final break may have a spectral origin, in which case no jet break has been observed and the half-opening angle of the jet of GRB 060729 must be larger than about 15 degrees for a wind medium. We compare the X-ray afterglow of GRB 060729 in a wind environment with other bright X-ray afterglows, in particular GRBs 061121 and 080319B, and discuss why the X-ray afterglow of GRB 060729 is such an exceptionally long-lasting event.
120 - M. De Pasquale 2005
We present the X-ray afterglow catalog of BeppoSAX from the launch of the satellite to the end of the mission. Thirty-three X-ray afterglows were securely identified based on their fading behavior out of 39 observations. We have extracted the continuum parameters (decay index, spectral index, flux, absorption) for all available afterglows. We point out a possible correlation between the X-ray afterglow luminosity and the energy emitted during the prompt $gamma$-ray event. We do not detect a significant jet signature within the afterglows, implying a lower limit on the beaming angle, neither a standard energy release when X-ray fluxes are corrected for beaming. Our data support the hypothesis that the burst should be surrounded by an interstellar medium rather than a wind environment, and that this environment should be dense. This may be explained by a termination shock located near the burst progenitor. We finally point out that some dark bursts may be explained by an intrinsic faintness of the event, while others may be strongly absorbed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا