Do you want to publish a course? Click here

Chandra Observations of the X-ray Environment of BL Lacs

60   0   0.0 ( 0 )
 Added by Davide Donato
 Publication date 2003
  fields Physics
and research's language is English
 Authors D. Donato




Ask ChatGPT about the research

We present Chandra observations of the X-ray environment of a sample of 6 BL Lacertae objects. The improved sensitivity of the ACIS experiment allows us to separate the core X-ray emission from the contribution of diffuse emission from the host galaxy/cluster scales. Within the short (2-6 ks) ACIS exposures, we find evidence for diffuse X-ray emission in 3 sources (BL Lac, PKS 0548-322, and PKS 2005-489). The diffuse emission can be modeled with a King profile with beta~0.3-0.6, core radii rc~15-28 kpc, and 0.4-5 keV luminosities in the range 10^{41}-10^{42} erg/s. In the remaining 3 sources, one (3C 371) has a radial profile entirely consistent with an unresolved source, while two (1ES 2344+514 and 1ES 2321+419) show evidence for weak diffuse emission on kpc scales. These results support current models for radio-loud AGN unifying BL Lacs and FRI radio galaxies through the orientation of their jets. In PKS 0548-322 and PKS 2005-489, we also find evidence for diffuse emission on cluster scales, although the spatial properties of this emission are not constrained. The temperature and luminosity of the cluster gas are typical of normal clusters. Interestingly, these are the two brightest sources of the sample, suggesting a link between environment and nuclear activity.



rate research

Read More

The spectral energy distribution of blazars around the synchrotron peak can be well described by the log-parabolic model that has three parameters: peak energy ($E_textrm{p}$), peak luminosity ($L_textrm{p}$) and the curvature parameter ($b$). It has been suggested that $E_textrm{p}$ shows relations with $L_textrm{p}$ and $b$ in several sources, which can be used to constrain the physical properties of the emitting region and/or acceleration processes of the emitting particles. We systematically study the $E_textrm{p}$-$L_textrm{p}$ and $E_textrm{p}$-(1$/b$) relations for 14 BL Lac objects using the 3-25~keV $RXTE$/PCA and 0.3-10~keV $Swift$/XRT data. Most objects (9/14) exhibit positive $E_textrm{p}$-$L_textrm{p}$ correlations, three sources show no correlation, and two sources display negative correlations. In addition, most targets (7/14) present no correlation between $E_textrm{p}$ and 1$/b$, five sources pose negative correlations, and two sources demonstrate positive correlations. 1ES~1959+650 displays two different $E_textrm{p}$-$L_textrm{p}$ relations in 2002 and 2016. We also analyze $E_textrm{p}$-$L_textrm{p}$ and $E_textrm{p}$-(1$/b$) relations during flares lasting for several days. The $E_textrm{p}$-$L_textrm{p}$ relation does not exhibit significant differences between flares, while the $E_textrm{p}$-(1$/b$) relation varies from flare to flare. For the total sample, when $L_textrm{p}$ < $textrm{10}^textrm{45} textrm{erg} textrm{s}^textrm{-1}$, there seems to be a positive $E_textrm{p}$-$L_textrm{p}$ correlation. $L_textrm{p}$ and the slope of $E_textrm{p}$-$L_textrm{p}$ relation present an anti-correlation, which indicates that the causes of spectral variations might be different between luminous and faint sources. $E_textrm{p}$ shows a positive correlation with the black hole mass. We discuss the implications of these results.
Observational and theoretical results indicate that low-redshift BL Lacertae objects are the most likely extragalactic sources to be detectable at TeV energies. In this paper we present the results of observations of 4 BL Lacertae objects (PKS0521-365, EXO0423.4-0840, PKS2005-489 and PKS2316-423) made between 1993 and 1996 with the CANGAROO 3.8m imaging Cherenkov telescope. During the period of these observations the gamma-ray energy threshold of the 3.8m telescope was ~2TeV. Searches for steady long-term emission have been made, and, inspired by the TeV flares detected from Mkn421 and Mkn501, a search on a night-by-night timescale has also been performed for each source. Comprehensive Monte Carlo simulations are used to estimate upper limits for both steady and short timescale emission.
The very high energy (VHE) gamma ray spectral index of high energy peaked blazars correlates strongly with its corresponding redshift whereas no such correlation is observed in the X-ray or the GeV bands. We attribute this correlation to a result of photon-photon absorption of TeV photons with the extragalactic background light (EBL) and utilizing this, we compute the allowed flux range for the EBL, which is independent of previous estimates. The observed VHE spectrum of the sources in our sample can be well approximated by a power-law, and if the de-absorbed spectrum is also assumed to be a power law, then we show that the spectral shape of EBL will be $epsilon n(epsilon) sim k log(frac{epsilon}{epsilon_p}) $. We estimate the range of values for the parameters defining the EBL spectrum, $k$ and $epsilon_p$, such that the correlation of the intrinsic VHE spectrum with redshift is nullified. The estimated EBL depends only on the observed correlation and the assumption of a power law source spectrum. Specifically, it does not depend on the spectral modeling or radiative mechanism of the sources, nor does it depend on any theoretical shape of the EBL spectrum obtained through cosmological calculations. The estimated EBL spectrum is consistent with the upper and lower limits imposed by different observations. Moreover, it also agrees closely with the theoretical estimates obtained through cosmological evolution models.
64 - Haocheng Zhang 2021
Relativistic magnetic reconnection is a potential particle acceleration mechanism for high-frequency BL Lacs (HBLs). The {it Imaging X-ray Polarimetry Explorer} ({it IXPE}) scheduled to launch in 2021 has the capability to probe the magnetic field evolution in HBLs, examining the magnetic reconnection scenario for the HBL flares. In this paper, we make the first attempt to self-consistently predict HBL X-ray polarization signatures arising from relativistic magnetic reconnection via combined particle-in-cell (PIC) and polarized radiation transfer simulations. We find that although the intrinsic optical and X-ray polarization degrees are similar on average, the X-ray polarization is much more variable in both polarization degree and angle (PD and PA). Given the sensitivity of the {it IXPE}, it may obtain one to a few polarization data points for one flaring event of nearby bright HBLs Mrk~421 and 501. However, it may not fully resolve the highly variable X-ray polarization. Due to the temporal depolarization, where the integration of photons with variable polarization states over a finite period of time can lower the detected PD, the measured X-ray PD can be considerably lower than the optical counterpart or even undetectable. The lower X-ray PD than the optical thus can be a characteristic signature of relativistic magnetic reconnection. For very bright flares where the X-ray polarization is well resolved, relativistic magnetic reconnection predicts smooth X-ray PA swings, which originate from large plasmoid mergers in the reconnection region.
We report results from Chandra observations of the X-ray jet of 3C~273 during the calibration phase in 2000 January. The zeroeth-order images and spectra from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray structure. The brightest optical knots are detected and resolved in the 0.2-8 keV energy band. The X-ray morphology tracks well the optical. However, while the X-ray brightness decreases along the jet, the outer parts of the jet tend to be increasingly bright with increasing wavelength. The spectral energy distributions of four selected regions can best be explained by inverse Compton scattering of (beamed) cosmic microwave background photons. The model parameters are compatible with equipartition and a moderate Doppler factor, which is consistent with the one-sidedness of the jet. Alternative models either imply implausible physical conditions and energetics (the synchrotron self-Compton model) or are sufficiently ad hoc to be unconstrained by the present data (synchrotron radiation from a spatially or temporally distinct particle population).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا