Do you want to publish a course? Click here

The WSRT wide-field HI survey: I. The background galaxy sample

60   0   0.0 ( 0 )
 Added by Robert Braun
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the Westerbork array to carry out an unbiased wide-field survey for HI emission features, achieving an RMS sensitivity of about 18 mJy/Beam at a velocity resolution of 17 km/s over 1800 deg^2 and between -1000 < V_Hel<+6500 km/s. The primary data consists of auto-correlation spectra with an effective angular resolution of 49 FWHM. We detect 155 external galaxies in excess of 8 sigma in integrated HI flux density. Plausible optical associations are found within a 30 search radius for all but one of our HI detections in DSS images, although several are not previously cataloged or do not have published red-shift determinations. Twenty-three of our objects are detected in HI for the first time. We classify almost half of our detections as ``confused, since one or more companions is cataloged within a radius of 30 and a velocity interval of 400 km/s. We identify a handful of instances of significant positional offsets exceeding 10 kpc of unconfused optical galaxies with the associated HI centroid, possibly indicative of severe tidal distortions or uncataloged gas-rich companions. A possible trend is found for an excess of detected HI flux in unconfused galaxies within our large survey beam relative to that detected previously in smaller telescope beams, both as function of increasing distance and increasing gas mass. This may be an indication for a diffuse gaseous component on 100 kpc scales in the environment of massive galaxies or a population of uncataloged low mass companions. We use our galaxy sample to estimate the HI mass function from our survey volume. Good agreement is found with the HIPASS BGC results, but only after explicit correction for galaxy density variations with distance.



rate research

Read More

We present results of a blind 21cm HI-line imaging survey of a galaxy overdensity located behind the Milky Way at $ell,b$ $approx$ 160 deg, 0.5 deg. The overdensity corresponds to a Zone-of-Avoidance crossing of the Perseus-Pisces Supercluster filament. Although it is known that this filament contains an X-ray galaxy cluster (3C129) hosting two strong radio galaxies, little is known about galaxies associated with this potentially rich cluster because of the high Galactic dust extinction. We mapped a sky area of $sim$9.6 sq.deg using the Westerbork Synthesis Radio Telescope in a hexagonal mosaic of 35 pointings observed for 12 hours each, in the radial velocity range $cz = 2400 - 16600$ km/s. The survey has a sensitivity of 0.36 mJy/beam rms at a velocity resolution of 16.5 km/s. We detected 211 galaxies, 62% of which have a near-infrared counterpart in the UKIDSS Galactic Plane Survey. We present a catalogue of the HI properties and an HI atlas containing total intensity maps, position-velocity diagrams, global HI profiles and UKIDSS counterpart images. For the resolved galaxies we also present HI velocity fields and radial HI surface density profiles. A brief analysis of the structures outlined by these galaxies finds that 87 of them lie at the distance of the Perseus-Pisces Supercluster ($cz sim 4000 - 8000$ km/s) and seem to form part of the 3C129 cluster. Further 72 detections trace an overdensity at a velocity of $cz approx$ 10000 km/s and seem to coincide with a structure predicted from mass density reconstructions in the first 2MASS Redshift Survey.
133 - G. Hasinger 2006
We present the first set of XMM-Newton EPIC observations in the 2 square degree COSMOS field. The strength of the COSMOS project is the unprecedented combination of a large solid angle and sensitivity over the whole multiwavelength spectrum. The XMM-Newton observations are very efficient in localizing and identifying active galactic nuclei (AGN) and clusters as well as groups of galaxies. One of the primary goals of the XMM-Newton Cosmos survey is to study the co-evolution of active galactic nuclei as a function of their environment in the Cosmic web. Here we present the log of observations, images and a summary of first research highlights for the first pass of 25 XMM-Newton pointings across the field. In the existing dataset we have detected 1416 new X-ray sources in the 0.5-2, 2-4.5 and 4.5-10 keV bands to an equivalent 0.5-2 keV flux limit of 7x10-16 erg cm-2 s-1. The number of sources is expected to grow to almost 2000 in the final coverage of the survey. From an X-ray color color analysis we identify a population of heavily obscured, partially leaky or reflecting absorbers, most of which are likely to be nearby, Compton-thick AGN.
We present an overview of the HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) Survey, which is the deepest systematic investigation of cold gas accretion in nearby spiral galaxies to date. Using the deep HI data that form the core of the survey, we are able to detect neutral hydrogen down to a typical column density limit of about 10$^{19}$ cm$^{-2}$ and thereby characterize the low surface brightness extra-planar and anomalous-velocity neutral gas in nearby galaxies with excellent spatial and velocity resolution. Through comparison with sophisticated kinematic modeling, our 3D HALOGAS data also allow us to investigate the disk structure and dynamics in unprecedented detail for a sample of this size. Key scientific results from HALOGAS include new insight into the connection between the star formation properties of galaxies and their extended gaseous media, while the developing HALOGAS catalogue of cold gas clouds and streams provides important insight into the accretion history of nearby spirals. We conclude by motivating some of the unresolved questions to be addressed using forthcoming 3D surveys with the modern generation of radio telescopes.
116 - G. Fasano , C. Marmo , J. Varela 2005
This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs with constraints on the redshift (0.04<z<0.07) and distance from the galactic plane (|b|>20). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow to define a local Zero-Point reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium resolution spectroscopic survey for 51 of the clusters in the master sample. In addition, a NIR (JK) survey of ~50 clusters and an H_alpha + UV survey of some 10 clusters are presently ongoing, while a very-wide-field optical survey has also been programmed. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ~0.025mag, reaching completeness to V~23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7)Mpc and (0.7-1.7)kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to get a valuable description of the local properties of clusters and galaxies in clusters.
We present Herschel observations of the Fornax cluster at 100, 160, 250, 350 and 500u with a spatial resolution of 7 - 36 arc sec (10 = 1 kpc at d_Fornax=17.9 Mpc). We define a sample of 11 bright galaxies, selected at 500u, directly comparable with our past work on Virgo. We find good agreement with previous observations made by IRAS and Planck. The FIR luminosity density is higher (factor of three) in Fornax compared to Virgo. The 100u (42.5-122.5u) luminosity is two orders of magnitude larger in Fornax than in the local field as measured by IRAS. Using stellar (L_{0.4-2.5}) and FIR (L_{100-500}) luminosities we estimate a mean optical depth of tau=0.4+/-0.1 - the same value as Virgo. For 10 of the 11 galaxies (NGC1399 excepted) we fit a modified blackbody curve (beta=2.0) to the SEDs to derive dust masses and temperatures of 10^{6.54-8.35} M_0 and T=14.6-24.2K respectively, comparable to Virgo. The derived stars-to-gas(atomic) and gas(atomic)-to-dust ratios vary from 1.1-67.6 and 9.8-436.5 respectively, again consistent with Virgo. Fornax is a mass overdensity in stars and dust of about 120 compared to the local field (30 for Virgo). Fornax and Virgo are both a factor of 6 lower over densities in gas(atomic) than in stars and dust indicating loss of gas, but not dust and stars, in the cluster environment. As the brightest FIR source in either Fornax and Virgo, NGC1365 is detected by Planck. The Planck data fit the PACS/SPIRE SED out to 1382u with no evidence of other sources of emission (spinning dust, free-free, synchrotron). At the opposite end of the scale NGC1399 is detected only at 500$mu$m with the emission probably arising from the nuclear radio source rather than inter-stellar dust.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا