No Arabic abstract
We present submillimeter observations of rotational transitions of carbon monoxide from J = 2 -> 1 up to 7 -> 6 for a sample of Asymptotic Giant Branch stars and red supergiants. It is the first time that the high transitions J = 6 -> 5 and 7 -> 6 are included in such a study. With line radiative transfer calculations, we aim to determine the mass-loss history of these stars by fitting the CO line intensities. We find that the observed line intensities of the high transitions, including the J = 4 -> 3 transition, are significantly lower than the predicted values. We conclude that the physical structure of the outflow of Asymptotic Giant Branch stars is more complex than previously thought. In order to understand the observed line intensities and profiles, a physical structure with a variable mass-loss rate and/or a gradient in stochastic gas velocity is required. A case study of the AGB star WX Psc is performed. We find that the CO line strengths may be explained by variations in mass-loss on time scales similar to those observed in the separated arc-like structures observed around post-AGB stars. In addition, a gradient in the stochastic velocity may play a role. Until this has been sorted out fully, any mass loss determinations based upon single CO lines will remain suspect.
Infrared Space Observatory (ISO) observations have shown that O-rich Asymptotic Giant Branch (AGB) stars exhibit crystalline silicate features in their spectra only if their mass-loss rate is higher than a certain threshold value. Usually, this is interpreted as evidence that crystalline silicates are not present in the dust shells of low mass-loss rate objects. In this study, radiative transfer calculations have been performed to search for an alternative explanation to the lack of crystalline silicate features in the spectrum of low mass-loss rate AGB stars. It is shown that due to a temperature difference between amorphous and crystalline silicates it is possible to include up to 40% of crystalline silicate material in the circumstellar dust shell, without the spectra showing the characteristic spectral features. Since this implies that low mass-loss rate AGB stars might also form crystalline silicates and deposit them into the Interstellar Medium (ISM), the described observational selection effect may put the process of dust formation around AGB stars and the composition of the predominantly amorphous dust in the Interstellar Medium in a different light. Our model calculations result in a diagnostic tool to determine the crystallinity of an AGB star with a known mass-loss rate.
This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both recent observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
A long debated issue concerning the nucleosynthesis of neutron-rich elements in Asymptotic Giant Branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidium-rich owing to overproduction of the long-lived radioactive isotope 87Rb, as predicted theoretically 40 years ago. This represents a direct observational evidence that the 22Ne(alpha,n)25Mg reaction must be the dominant neutron source in these stars. These stars then challenge our understanding of the late stages of the evolution of intermediate-mass stars and would promote a highly variable Rb/Sr environment in the early solar nebula.
Observation of CO emission around asymptotic giant branch (AGB) stars is the primary method to determine gas mass-loss rates. While radiative transfer models have shown that molecular levels of CO can become mildly inverted, causing maser emission, CO maser emission has yet to be confirmed observationally. High-resolution observations of the CO emission around AGB stars now have the brightness temperature sensitivity to detect possible weak CO maser emission. We used high angular resolution observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the small-scale structure of CO $J=3-2$ emission around the oxygen-rich AGB star W Hya. We find CO maser emission amplifying the stellar continuum with an optical depth $tauapprox-0.55$. The maser predominantly amplifies the limb of the star because CO $J=3-2$ absorption from the extended stellar atmosphere is strongest towards the centre of the star. The CO maser velocity corresponds to a previously observed variable component of high-frequency H$_2$O masers and with the OH maser that was identified as the amplified stellar image. This implies that the maser originates beyond the acceleration region and constrains the velocity profile since we find the population inversion primarily in the inner circumstellar envelope. We find that inversion can be explained by the radiation field at 4.6 $mu$m and that the existence of CO maser emission is consistent with the estimated mass-loss rates for W Hya. However, the pumping mechanism requires a complex interplay between absorption and emission lines in the extended atmosphere. Excess from dust in the circumstellar envelope of W Hya is not sufficient to contribute significantly to the required radiation field at 4.6 $mu$m. The interplay between molecular lines that cause the pumping can be constrained by future multi-level CO observations.
Aims. In this study, we determine the morphology and mass-loss rate of jets emanating from the companion in post-asymptotic giant branch (post-AGB) binary stars with a circumbinary disk. In doing so, we also determine the mass accretion rates on to the companion and investigate the source feeding the circum-companion accretion disk. Methods. We perform a spatio-kinematic modelling of the jet of two well-sampled post-AGB binaries, BD+46442 and IRAS19135+3937, by fitting the orbital phased time series of H-alpha spectra. Once the jet geometry, velocity and scaled density structure are computed, we carry out radiative transfer modelling of the jet for the first four Balmer lines to determine the jet densities, thus allowing us to compute the jet mass-loss rates and mass accretion rates. Results. The spatio-kinematic model of the jet reproduces the observed absorption feature in the H-alpha lines. In both objects, the jets have an inner region with extremely low density. Using our radiative transfer model, we find the full three-dimensional density structure of both jets. From these results, we can compute mass-loss rates of the jets, which are of the order of 10^-7 - 10^-5 M_sol/yr. We estimate mass accretion rates onto the companion of 10^-6 - 10^-4 M_sol/yr. Conclusions. Based on the mass accretion rates found for these two objects, we conclude that the circumbinary disk is most likely the source feeding the circum-companion accretion disk. This is in agreement with the observed depletion patterns in post-AGB binaries. The high accretion rates from the circumbinary disk imply that the lifetime of the disk will be short. Mass-transfer from the post-AGB star cannot be excluded in these systems, but it is unlikely to provide a sufficient mass-transfer rate to sustain the observed jet mass-loss rates.