Do you want to publish a course? Click here

The Extragalactic Distance Scale

69   0   0.0 ( 0 )
 Added by Joseph B. Jensen
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Significant progress has been made during the last 10 years toward resolving the debate over the expansion rate of the Universe. The current value of the Hubble parameter, Ho, is now arguably known with an accuracy of 10%, largely due to the tremendous increase in the number of galaxies in which Cepheid variable stars have been discovered. Increasingly accurate secondary distance indicators, many calibrated using Cepheids, now provide largely concordant measurements of Ho well out into the Hubble flow, and deviations from the smooth Hubble flow allow us to better measure the dynamical structure of the local Universe. The change in the Hubble parameter with redshift provided the first direct evidence for acceleration and dark energy in the Universe. Extragalactic distance measurements are central to determining the size, age, composition, and fate of the Universe. We discuss remaining systematic uncertainties, particularly related to the Cepheid calibration, and identify where improvements are likely to be made in the next few years.



rate research

Read More

Uncertainty in the metal abundance dependence of the Cepheid variable period- luminosity (PL) relation remains one of the outstanding sources of systematic error in the extragalactic distance scale and Hubble constant. To test for such a metallicity dependence, we have used the WFPC2 camera on the Hubble Space Telescope (HST) to observe Cepheids in two fields in the nearby spiral galaxy M101, which span a range in oxygen abundance of 0.7+-0.15 dex. A differential analysis of the PL relations in V and I in the two fields yields a marginally significant change in the inferred distance modulus on metal abundance, with d(m-M)/d[O/H] = -0.24+-0.16 mag/dex. The trend is in the theoretically predicted sense that metal-rich Cepheids appear brighter and closer than metal-poor stars. External comparisons of Cepheid distances with those derived from three other distance indicators, in particular the tip of the red giant branch method, further constrain the magnitude of any Z-dependence of the PL relation at V and I. The overall effects of any metallicity dependence on the distance scale derived with HST will be of the order of a few percent or less for most applications, though distances to individual galaxies at the extremes of the metal abundance range may be affected at the 10% level.
The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.
We report the detection of Cepheid variable stars in the barred spiral galaxy NGC 1365, located in the Fornax cluster, using the Hubble Space Telescope Wide Field and Planetary Camera 2. Twelve V (F555W) and four I (F814W) epochs of observation were obtained. The two photometry packages, ALLFRAME and DoPHOT, were separately used to obtain profile-fitting photometry of all the stars in the HST field. The search for Cepheid variable stars resulted in a sample of 52 variables, with periods between 14 and 60 days, in common with both datasets. ALLFRAME photometry and light curves of the Cepheids are presented. A subset of 34 Cepheids were selected on the basis of period, light curve shape, similar ALLFRAME and DoPHOT periods, color, and relative crowding, to fit the Cepheid period-luminosity relations in V and I for both ALLFRAME and DoPHOT. The measured distance modulus to NGC 1365 from the ALLFRAME photometry is 31.31 +/- 0.20 (random) +/- 0.18 (systematic) mag, corresponding to a distance of 18.3 +/- 1.7 (random) +/- 1.6 (systematic) Mpc. The reddening is measured to be E(V-I) = 0.16 +/- 0.08 mag. These values are in excellent agreement with those obtained using the DoPHOT photometry, namely a distance modulus of 31.26 +/- 0.10 mag, and a reddening of 0.15 +/- 0.10 mag (internal errors only).
We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3 per cent measurement of the Hubble constant using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to the Hubble constant using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble Type, of any inclination, and, utilizing old stars in low density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of the Hubble constant via the distance ladder. Initially, the accuracy of our value of the Hubble constant will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end distance ladder completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to the Hubble constant will allow for the high precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to the Hubble constant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا