Do you want to publish a course? Click here

Galaxy interactions - poor starburst triggers

88   0   0.0 ( 0 )
 Added by Nils Bergvall
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a study of tidally triggered star formation in galaxies, based on spectroscopic/photometric observations in the optical/near-IR of a magnitude limited sample of 59 systems of interacting and merging galaxies and a comparison sample of 38 normal isolated galaxies. In contrast to results from previous investigations, our global UBV colours do not support a significant enhancement of starforming activity in the interacting/merging galaxies. We claim that this is true also for Arp galaxies. A moderate increase in star formation is found in the very centres of the interacting galaxies contributing marginally to the total luminosity. The interacting and in particular the merging galaxies are characterized by increased far infrared (hereafter FIR) luminosities and temperatures that weakly correlate with the central activity. The L(FIR)/L(B) ratio however, is remarkably similar in the two samples, indicating that true starbursts normally are not hiding in the central regions of the FIR luminous cases. The gas mass-to-luminosity ratio in optical-IR is practically independent of luminosity, lending further support to the paucity of true massive starburst galaxies triggered by interactions/mergers. Our conclusion is that interacting and merging galaxies, from the global star formation aspect, generally do not differ dramatically from scaled



rate research

Read More

(abridged) There are good observational reasons to believe that the progenitors of red galaxies have undergone starbursts, followed by a post-starburst phase. We investigate the environments of post-starburst galaxies by measuring textsl{(1)} number densities in $8 h^{-1} mathrm{Mpc}$ radius comoving spheres, textsl{(2)} transverse distances to nearest Virgo-like galaxy clusters, and textsl{(3)} transverse distances to nearest luminous-galaxy neighbors. We compare the post-starburst galaxies to currently star-forming galaxies identified solely by A-star excess or $Halpha$ emission. We find that post-starburst galaxies are in the same kinds of environments as star-forming galaxies; this is our ``null hypothesis. More importantly, we find that at each value of the A-star excess, the star-forming and post-starburst galaxies lie in very similar distributions of environment. The only deviations from our null hypothesis are barely significant: a slight deficit of post-starburst galaxies (relative to the star-forming population) in very low-density regions, a small excess inside the virial radii of clusters, and a slight excess with nearby neighbors. None of these effects is strong enough to make the post-starburst galaxies a high-density phenomenon, or to argue that the starburst events are primarily triggered by external tidal impulses (e.g., from close passages of massive galaxies). The small excess inside cluster virial radii suggests that some post-starbursts are triggered by interactions with the intracluster medium, but this represents a very small fraction of all post-starburst galaxies.
65 - F. Legrand , D. Kunth , J.-R. Roy 1997
Wolf-Rayet stars (WR) have been detected in the NW region of the metal-poor starburst galaxy IZw 18. The integrated luminosity and FWHM of the bumps at 4650 A and 5808 A are consistent with the presence of a few individual stars of WC4 or WC5 type. Evolutionary synthesis models predict few WRs in this galaxy, but only of WN type. The presence of WC stars at such low metallicity could however be explained by high mass loss rates, which would constrain the IMF upper mass cut-off in IZw 18 to be higher than 80 Msol or alternatively favor a binary channel for WR formation. WC stars could also explain the strong and narrow HeII 4686 A emission line which peaks co-spatially with the WR bump emission, as suggested by Schaerer (1996). This detection shows that WR stars, even of WC type, are formed at metallicities below 1/40th solar.
We present the first detailed dissection of the circumgalactic medium (CGM) of massive starburst galaxies at z > 2. Our target is a submillimeter galaxy (SMG) at z = 2.674 that has a star formation rate of 1200 $M_odot$/yr and a molecular gas reservoir of $1.3times10^{11} M_odot$. We characterize its CGM with two background QSOs at impact parameters of 93 kpc and 176 kpc. We detect strong HI and metal-line absorption near the redshift of the SMG towards both QSOs, each consisting of three main subsystems spanning over 1500 km/s. The absorbers show remarkable kinematic and metallicity coherence across a separation of 86 kpc. In particular, the cool gas in the CGM of the SMG exhibits high HI column densities ($log N_{rm HI}/{rm cm}^{-2} = 20.2, 18.6$), low metallicities ([M/H] $approx$ -2.0), and similar radial velocities ($approx$ -300 km/s). While the HI column densities match previous results on the CGM around QSOs at z > 2, the metallicities are lower by more than an order of magnitude, making it an outlier in the line width$-$metallicity relation of damped Ly$alpha$ absorbers. The large physical extent, the velocity coherence, the high surface density, and the low metallicity are all consistent with the cool, inflowing, and near-pristine gas streams predicted to penetrate hot massive halos at z > 1.5. We estimate a total gas accretion rate of ~100 $M_odot$/yr from three such streams, which falls short of the star formation rate but is consistent with simulations. At this rate, it takes about a gigayear to acquire the molecular gas reservoir of the central starburst.
The purported spiral host galaxy of GRB 020819B at z=0.41 has been seminal in establishing our view of the diversity of long-duration gamma-ray burst environments: optical spectroscopy of this host provided evidence that GRBs can form even at high metallicities, while millimetric observations suggested that GRBs may preferentially form in regions with minimal molecular gas. We report new observations from VLT (MUSE and X-shooter) which demonstrate that the purported host is an unrelated foreground galaxy. The probable radio afterglow is coincident with a compact, highly star-forming, dusty galaxy at z=1.9621. The revised redshift naturally explains the apparent nondetection of CO(3-2) line emission at the afterglow site from ALMA. There is no evidence that molecular gas properties in GRB host galaxies are unusual, and limited evidence that GRBs can form readily at super-Solar metallicity.
We report the discovery of BOSS-EUVLG1 at z=2.469, by far the most luminous, almost un-obscured star-forming galaxy known at any redshift. First classified as a QSO within the Baryon Oscillation Spectroscopic Survey, follow-up observations with the Gran Telescopio Canarias reveal that its large luminosity, MUV = -24.40 and log(L_Lya/erg s-1) = 44.0, is due to an intense burst of star-formation, and not to an AGN or gravitational lensing. BOSS-EUVLG1 is a compact (reff = 1.2 kpc), young (4-5 Myr) starburst with a stellar mass log(M*/Msun) = 10.0 +/- 0.1 and a prodigious star formation rate of ~1000 Msun yr-1. However, it is metal- and dust-poor (12+log(O/H) = 8.13 +/- 0.19, E(B-V) = 0.07, log(LIR/LUV) < -1.2), indicating that we are witnessing the very early phase of an intense starburst that has had no time to enrich the ISM. BOSS-EUVLG1 might represent a short-lived (<100 Myrs), yet important phase of star-forming galaxies at high redshift that has been missed in previous surveys. Within a galaxy evolutionary scheme, BOSS-EUVLG1 could likely represent the very initial phases in the evolution of massive quiescent galaxies, even before the dusty star-forming phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا