Do you want to publish a course? Click here

A Long Stream of Metal-Poor Cool Gas around a Massive Starburst Galaxy at z = 2.67

125   0   0.0 ( 0 )
 Added by Hai Fu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first detailed dissection of the circumgalactic medium (CGM) of massive starburst galaxies at z > 2. Our target is a submillimeter galaxy (SMG) at z = 2.674 that has a star formation rate of 1200 $M_odot$/yr and a molecular gas reservoir of $1.3times10^{11} M_odot$. We characterize its CGM with two background QSOs at impact parameters of 93 kpc and 176 kpc. We detect strong HI and metal-line absorption near the redshift of the SMG towards both QSOs, each consisting of three main subsystems spanning over 1500 km/s. The absorbers show remarkable kinematic and metallicity coherence across a separation of 86 kpc. In particular, the cool gas in the CGM of the SMG exhibits high HI column densities ($log N_{rm HI}/{rm cm}^{-2} = 20.2, 18.6$), low metallicities ([M/H] $approx$ -2.0), and similar radial velocities ($approx$ -300 km/s). While the HI column densities match previous results on the CGM around QSOs at z > 2, the metallicities are lower by more than an order of magnitude, making it an outlier in the line width$-$metallicity relation of damped Ly$alpha$ absorbers. The large physical extent, the velocity coherence, the high surface density, and the low metallicity are all consistent with the cool, inflowing, and near-pristine gas streams predicted to penetrate hot massive halos at z > 1.5. We estimate a total gas accretion rate of ~100 $M_odot$/yr from three such streams, which falls short of the star formation rate but is consistent with simulations. At this rate, it takes about a gigayear to acquire the molecular gas reservoir of the central starburst.



rate research

Read More

Using long-slit optical spectroscopy obtained at the 10.4 m Gran Telescopio Canarias, we have examined the gaseous environment of the radio-loud quasar TXS 1436+157 (z=2.54), previously known to be associated with a large Ly-alpha nebula and a spatially extended Ly-alpha-absorbing structure. From the Ly-alpha nebula we measure kinematic properties consistent with infall at a rate of about 10-100 M./yr - more than sufficient to power a quasar at the top of the luminosity function. The absorbing structure lies outside of the Ly-alpha nebula, at a radius of >40 kpc from the quasar. Against the bright unresolved continuum and line emission from the quasar, we detect in absorption the NV 1239,1241, CIV 1548,1551 and SiIV 1394,1403 doublets, with no unambiguous detection of absorption lines from any low-ionization species of metal. The metal column densities, taken together with the HI column density measurement from the literature, indicate that the absorbing gas is predominantly ionized by the quasar, has a mass of hydrogen of >1.6 x 10E11 M., a gas density of <18 per cubic cm, a line of sight thickness of >18 pc, and a covering factor approaching unity. While this absorbing structure is clearly not composed of pristine gas, it has an extremely low metallicity, with ionization models providing a 3-sigma limit of 12+log(O/H)<7.3. To explain these results, we discuss a scenario involving starburst-driven super-bubbles and the creation of infalling filaments of cold gas which fuel/trigger the quasar. We also discuss the possibility of detecting large-scale absorbers such as this in emission when illuminated by a powerful quasar.
102 - Kate H. R. Rubin 2009
We study the cool gas around a galaxy at z = 0.4729 using Keck/LRIS spectroscopy of a bright (B = 21.7) background galaxy at z = 0.6942 at a transverse distance of 16.5/h_70 kpc. The background galaxy spectrum reveals strong FeII, MgII, MgI, and CaII absorption at the redshift of the foreground galaxy, with a MgII 2796 rest equivalent width of 3.93 +/- 0.08 Angstroms, indicative of a velocity width exceeding 400 km/s. Because the background galaxy is large (> 4/h_70 kpc), the high covering fraction of the absorbing gas suggests that it arises in a spatially extended complex of cool clouds with large velocity dispersion. Spectroscopy of the massive (log M_*/M_sun = 11.15 +/- 0.08) host galaxy reveals that it experienced a burst of star formation about 1 Gyr ago and that it harbors a weak AGN. We discuss the possible origins of the cool gas in its halo, including multiphase cooling of hot halo gas, cold inflow, tidal interactions, and galactic winds. We conclude the absorbing gas was most likely ejected or tidally stripped from the interstellar medium of the host galaxy or its progenitors during the past starburst event. Adopting the latter interpretation, these results place one of only a few constraints on the radial extent of cool gas driven or stripped from a galaxy in the distant Universe. Future studies with integral field unit spectroscopy of spatially extended background galaxies will provide multiple sightlines through foreground absorbers and permit analysis of the morphology and kinematics of the gas surrounding galaxies with a diverse set of properties and environments.
The Phoenix stellar stream has a low intrinsic dispersion in velocity and metallicity that implies the progenitor was probably a low mass globular cluster. In this work we use Magellan/MIKE high-dispersion spectroscopy of eight Phoenix stream red giants to confirm this scenario. In particular, we find negligible intrinsic scatter in metallicity ($sigma(mathrm{[Fe~II/H]}) = 0.04^{+0.11}_{-0.03}$) and a large peak-to-peak range in [Na/Fe] and [Al/Fe] abundance ratios, consistent with the light element abundance patterns seen in the most metal-poor globular clusters. However, unlike any other globular cluster, we also find an intrinsic spread in [Sr II/Fe] spanning $sim$1 dex, while [Ba II/Fe] shows nearly no intrinsic spread ($sigma(mathrm{[Ba~II/H]}) = {0.03}^{+0.10}_{-0.02}$). This abundance signature is best interpreted as slow neutron capture element production from a massive fast-rotating metal-poor star ($15-20 mathrm{M}_odot$, $v_mathrm{ini}/v_mathrm{crit} = 0.4$, $[mathrm{Fe/H}] = -3.8$). The low inferred cluster mass suggests the system would have been unable to retain supernovae ejecta, implying that any massive fast-rotating metal-poor star that enriched the interstellar medium must have formed and evolved before the globular cluster formed. Neutron capture element production from asymptotic giant branch stars or magneto-rotational instabilities in core-collapse supernovae provide poor fits to the observations. We also report one Phoenix stream star to be a lithium-rich giant ($A(mathrm{Li}) = 3.1 pm 0.1$). At $[mathrm{Fe/H}] = -2.93$ it is among the most metal-poor lithium-rich giants known.
In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxys virial radius, as optically thick Lyman-limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R_perp = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen [N(HI) = 10^(19.50 +/- 0.16) cm^-2] we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z / Zsolar) = -2.0 +/- 0.17, or (7-15) x 10^-3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature < 20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities > 0.1 solar, ten times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly-ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modelling are critical to accurately appraise the distribution of metals in the high-redshift CGM.
We present results from a search for high-redshift J--band ``dropout galaxies in the portion of the GOODS southern field that is covered by extremely deep imaging from the Hubble Ultradeep Field (HUDF).Using observations at optical, near-infrared and mid-infrared wavelengths from the Hubble and Spitzer Space Telescopes and the ESO-VLT, we search for very massive galaxies at high redshifts and find one particularly remarkable candidate. Its spectral energy distribution is consistent with a galaxy at z ~ 6.5 and a stellar mass of 6x10e11 M(sun) (for a Salpeter IMF). We interpret a prominent photometric break between the near-infrared and Spitzer bandpasses as the 3646A Balmer discontinuity. The best-fitting models have low reddening and ages of several hundred Myr, placing the formation of the bulk of the stars at z > 9. Alternative models of dusty galaxies at z ~ 2.5 are possible but provide significantly poorer fits. The object is detected with Spitzer at 24 micron. This emission originats from an obscured active nucleus or star formation. We present optical and near-infrared spectroscopy which has, thus far, failed to detect any spectral features. This helps limit the solution in which the galaxy is a starburst or active galaxy at z ~ 2.5. If the high-redshift interpretation is correct, this object would be an example of a galaxy that formed by a process strongly resembling traditional models of monolithic collapse, in a way which a very large mass of stars formed within a remarkably short period of time, at very high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا