No Arabic abstract
We present a study of accretion in a sample of 45 young, low mass objects in a variety of star forming regions and young associations, about half of which are likely substellar. Based primarily on the presence of broad, asymmetric Halpha emission, we have identified 13 objects (~30% of our sample) which are strong candidates for ongoing accretion. At least 3 of these are substellar. We do not detect significant continuum veiling in most of the accretors with late spectral types (M5-M7). Accretion shock models show that lack of measurable veiling allows us to place an upper limit to the mass accretion rates of <~ 10^{-10} Msun/yr. Using magnetospheric accretion models with appropriate (sub)stellar parameters, we can successfully explain the accretor Halpha emission line profiles, and derive quantitative estimates of accretion rates in the range 10^{-12} < Mdot < 10^{-9} Msun/yr. There is a clear trend of decreasing accretion rate with stellar mass, with mean accretion rates declining by 3-4 orders of magnitude over ~ 1 - 0.05 Msun.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.
High resolution (lambda / Delta-lambda = 50,000) K-band spectra of massive, embedded, young stellar objects are presented. The present sample consists of four massive young stars located in nascent clusters powering Galactic giant H II regions. Emission in the 2.3 micron 2--0 vibrational--rotational bandhead of CO is observed. A range of velocity broadened profiles seen in three of the objects is consistent with the emission arising from a circumstellar disk seen at various inclination angles. Br gamma spectra of the same spectral and spatial resolution are also presented which support an accretion disk or torus model for massive stars. In the fourth object, Br emission suggesting a rotating torus is observed, but the CO profile is narrow, indicating that there may be different CO emission mechanisms in massive stars and this is consistent with earlier observations of the BN object and MWC 349. To--date, only young massive stars of late O or early B types have been identified with clear accretion disk signatures in such embedded clusters. Often such stars are found in the presence of other more massive stars which are revealed by their photospheric spectra but which exhibit no disk signatures. This suggests the timescale for dissipating their disks is much faster than the less massive OB stars or that the most massive stars do not form with accretion disks.
The abundance of brown dwarfs (BDs) in young clusters is a diagnostic of star formation theory. Here we revisit the issue of determining the substellar initial mass function (IMF), based on a comparison between NGC1333 and IC348, two clusters in the Perseus star-forming region. We derive their mass distributions for a range of model isochrones, varying distances, extinction laws and ages, with comprehensive assessments of the uncertainties. We find that the choice of isochrone and other parameters have significant effects on the results, thus we caution against comparing IMFs obtained using different approaches. For NGC1333, we find that the star/BD ratio R is between 1.9 and 2.4, for all plausible scenarios, consistent with our previous work. For IC348, R is between 2.9 and 4.0, suggesting that previous studies have overestimated this value. Thus, the star forming process generates about 2.5-5 substellar objects per 10 stars. The derived star/BD ratios correspond to a slope of the power-law mass function of alpha=0.7-1.0 for the 0.03-1.0Msol mass range. The median mass in these clusters - the typical stellar mass - is between 0.13-0.30Msol. Assuming that NGC1333 is at a shorter distance than IC348, we find a significant difference in the cumulative distribution of masses between the two clusters, resulting from an overabundance of very low mass objects in NGC1333. Gaia astrometry will constrain the cluster distances better and will lead to a more definitive conclusion. Furthermore, ratio R is somewhat larger in IC348 compared with NGC1333, although this difference is still within the margins of error. Our results indicate that environments with higher object density may produce a larger fraction of very low mass objects, in line with predictions for brown dwarf formation through gravitational fragmentation of filaments falling into a cluster potential.
Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains a challenge. The presence of very thick clouds has been suggested because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provides a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperature from ~2000 K down to ~1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constrains in the mid-infrared, helping to confirm/refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence/absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogues.
This article represents a short review of the variability characteristics of young stellar objects. Variability is a key property of young stars. Two major origins may be distinguished: a scaled-up version of the magnetic activity seen on main-sequence stars and various processes related to circumstellar disks, accretion and outflows.