No Arabic abstract
Using cosmological simulations, we make predictions for the distribution of clusters in a plausible non-gaussian model where primordial voids nucleated during inflation act together with scale-invariant adiabatic gaussian fluctuations as seeds for the formation of large-scale structure. This model agrees with most recent observations of the anisotropies of the cosmic microwave background (CMB) and can account for the excess of power measured on cluster scales by the Cosmic Background Imager (CBI), the large empty regions apparent in nearby galaxy redshift surveys and the number of giant arcs measured in deep cluster lensing surveys. We show that the z=0 cluster mass function differs from predictions for a standard LCDM cosmology with the same sigma_8. Moreover, as massive clusters also form much earlier in the void scenario, we show that integrated number counts of SZ sources and simple statistics of strong lensing can easily falsify this model.
We generalize in several ways the results existing in the literature: a) we make use of an exact general relativistic solution for a spherical, nearly empty cavity in the matter dominated era to evaluate the null geodesics and the Sachs-Wolfe effect; b) we evaluate the magnitude of the adiabatic fluctuations of the photon-baryon plasma; c) we study the influence of the shell profile; and d) we take into account the finite thickness of the last scattering surface (LSS) and the influence of its position with respect to the void center. We find empirically an analytic approximation to the Sachs-Wolfe effect for all crossing geometries and we derive an upper limit of $approx$ 25 $h^{-1}$ Mpc for the comoving radii of voids sitting on the LSS in order to achieve compatibility with COBEs data. As a nearly empty void has an overcomoving expansion of a factor of $approx$ 4 between decoupling and the present, the maximum allowed size at present is $approx$ 100 $h^{-1}$ Mpc. On the other hand, the smallness of the comoving size relative to the sound horizon reduces strongly the adiabatic effect by Silk damping and makes it negligible. Most of the signature of primordial voids comes therefore from metric effects and consists of subdegree spots blue or red depending on whether the center lies beyond or within the LSS. In conclusion we refine and confirm earlier constraints on a power law void spectrum originated in an inflationary phase transition and capable of generating the observed large scale structure.
The merger rate of primordial black holes depends on their initial clustering. In the absence of primordial non-Gaussianity correlating short and large-scales, primordial black holes are distributed `a la Poisson at the time of their formation. However, primordial non-Gaussianity of the local-type may correlate primordial black holes on large-scales. We show that future experiments looking for CMB $mu$-distortion would test the hypothesis of initial primordial black hole clustering induced by local non-Gaussianity, while existing limits already show that significant non-Gaussianity is necessary to induce primordial black hole clustering.
Observations and theoretical work suggest that globular clusters may be born with initially very large binary fractions. We present first results from our newly modified Monte-Carlo cluster evolution code, which treats binary interactions exactly via direct N-body integration. It is shown that binary scattering interactions generate significantly less energy than predicted by the recipes that have been used in the past to model them in approximate cluster evolution methods. The new result that the cores of globular clusters in the long-lived binary-burning phase are smaller than previously predicted weakens the agreement with observations, thus implying that more than simply stellar dynamics is at work in shaping the globular clusters we observe today.
Upcoming surveys such as LSST{} and Euclid{} will significantly improve the power of weak lensing as a cosmological probe. To maximise the information that can be extracted from these surveys, it is important to explore novel statistics that complement standard weak lensing statistics such as the shear-shear correlation function and peak counts. In this work, we use a recently proposed weak lensing observable -- weak lensing voids -- to make parameter constraint forecasts for an LSST-like survey. We use the cosmoslics{} $w$CDM simulation suite to measure void statistics as a function of cosmological parameters. The simulation data is used to train a Gaussian process regression emulator that we use to generate likelihood contours and provide parameter constraints from mock observations. We find that the void abundance is more constraining than the tangential shear profiles, though the combination of the two gives additional constraining power. We forecast that without tomographic decomposition, these void statistics can constrain the matter fluctuation amplitude, $S_8$ within 0.3% (68% confidence interval), while offering 1.5, 1.5 and 2.7% precision on the matter density parameter, $Omega_{rm m}$, the reduced Hubble constant, $h$, and the dark energy equation of state parameter, $w_0$, respectively. These results are tighter than the constraints from the shear-shear correlation function with the same observational specifications for $Omega_m$, $S_8$ and $w_0$. The constraints from the WL voids also have complementary parameter degeneracy directions to the shear 2PCF for all combinations of parameters that include $h$, making weak lensing void statistics a promising cosmological probe.
We forecast the prospective constraints on the ionized gas model $f_{rm gas}(z)$ at different evolutionary epochs via the tomographic cross-correlation between kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed momentum field at different redshifts. The experiments we consider are the Planck and CMB Stage-4 survey for CMB and the SDSS-III for the galaxy spectroscopic survey. We calculate the tomographic cross-correlation power spectrum, and use the Fisher matrix to forecast the detectability of different $f_{rm gas}(z)$ models. We find that for constant $f_{rm gas}$ model, Planck can constrain the error of $f_{rm gas}$ ($sigma_{f_{rm gas}}$) at each redshift bin to $sim 0.2$, whereas four cases of CMB-S4 can achieve $sigma_{f_{rm gas}} sim 10^{-3}$. For $f_{rm gas}(z)=f_{rm gas,0}/(1+z)$ model the error budget will be slightly broadened. We also investigate the model $f_{rm gas}(z)=f_{rm gas,0}/(1+z)^{alpha}$. Planck is unable to constrain the index of redshift evolution, but the CMB-S4 experiments can constrain the index $alpha$ to the level of $sigma_{alpha} sim 0.01$--$0.1$. The tomographic cross-correlation method will provide an accurate measurement of the ionized gas evolution at different epochs of the Universe.