No Arabic abstract
We present the X-ray source number counts in two energy bands (0.5-2 and 2-10 keV) from a very large source sample: we combine data of six different surveys, both shallow wide field and deep pencil beam, performed with three different satellites (ROSAT, Chandra and XMM-Newton). The sample covers with good statistics the largest possible flux range so far: [2.4*10^-17 - 10^-11] cgs in the soft band and [2.1*10^-16 - 8*10^{-12}]cgs in the hard band. Integrating the flux distributions over this range and taking into account the (small) contribution of the brightest sources we derive the flux density generated by discrete sources in both bands. After a critical review of the literature values of the total Cosmic X--Ray Background (CXB) we conclude that, with the present data, the 94.3%, and 88.8% of the soft and hard CXB can be ascribed to discrete source emission. If we extrapolate the analytical form of the Log N--Log S distribution beyond the flux limit of our catalog in the soft band we find that the flux from discrete sources at ~3*10^-18 cgs is consistent with the entire CXB, whereas in the hard band it accounts for only 93% of the total CXB at most, hinting for a faint and obscured population to arise at even fainter fluxes.
We present the 3-8 keV and 8-24 keV number counts of active galactic nuclei (AGN) identified in the NuSTAR extragalactic surveys. NuSTAR has now resolved 33-39% of the X-ray background in the 8-24 keV band, directly identifying AGN with obscuring columns up to approximately 1e25 /cm2. In the softer 3-8 keV band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5e-15 < S(3 - 8 keV)/(erg/cm2/s) < 1e-12 probed by NuSTAR. In the hard 8-24 keV band NuSTAR probes fluxes over the range 2e-14 < S(8-24 keV)/(erg/cm2/s) < 1e-12, a factor of approximately 100 fainter than previous measurements. The 8-24 keV number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15-55 keV number counts measured at higher fluxes S(15-55 keV) > 1e-11 erg/cm2/s, reflecting the evolution of the AGN population between the Swift/BAT local (z<0.1) sample and NuSTARs z~1 sample. CXB synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGN at low redshifts.
We estimate the contribution of AGNs and of their host galaxies to the infrared background. We use the luminosity function and evolution of AGNs recently determined by the hard X-ray surveys, and new Spectral Energy Distributions connecting the X-ray and the infrared emission, divided in intervals of absorption. These two ingredients allow us to determine the contribution of AGNs to the infrared background by using mostly observed quantities, with only minor assumptions. We obtain that AGN emission contributes little to the infrared background ($<$5% over most of the infrared bands), implying that the latter is dominated by star formation. However, AGN host galaxies may contribute significantly to the infrared background, and more specifically 10--20% in the 1--20$mu$m range and $sim$5% at $lambda<60mu m$. We also give the contribution of AGNs and of their host galaxies to the source number counts in various infrared bands, focusing on those which will be observed with Spitzer. We also report a significant discrepancy between the expected contribution of AGN hosts to the submm background and bright submm number counts with the observational constraints. We discuss the causes and implications of this discrepancy and the possible effects on the Spitzer far-IR bands.
Measuring the Cosmic X-ray Background (CXB) is a key to understand the Active Galactic Nuclei population, their absorption distribution and their average spectra. However, hard X-ray instruments suffer from time-dependent backgrounds and cross-calibration issues. The uncertainty of the CXB normalization remain of the order of 20%. To obtain a more accurate measurement, the Monitor Vsego Neba (MVN) instrument was built in Russia but not yet launched to the ISS (arXiv:1410.3284). We follow the same ideas to develop a CXB detector made of four collimated spectrometers with a rotating obturator on top. The collimators block off-axis photons below 100 keV and the obturator modulates on-axis photons allowing to separate the CXB from the instrumental background. Our spectrometers are made of 20 mm thick CeBr$_{3}$ crystals on top of a SiPM array. One tube features a $sim$20 cm$^2$ effective area and more energy coverage than MVN, leading to a CXB count rate improved by a factor of $sim$10 and a statistical uncertainty $sim$0.5% on the CXB flux. A prototype is being built and we are seeking for a launch opportunity.
We present a work in progress aimed at measuring the spectrum of the Cosmic X-ray Background (CXB) with the EPIC detectors onboard XMM-Newton. Our study includes a detailed characterization of the EPIC non X-ray background, which is crucial in making a robust measurement of the spectrum of CXB. We present preliminary results, based on the analysis of a set of Commissioning and Performance Verification high galactic latitude observations.
We have analyzed a large set of RXTE/PCA scanning and slewing observations performed between April 1996 and March 1999. We obtained the 3-20 keV spectrum of the cosmic X-ray background (CXB) by subtracting Earth-occulted observations from observations of the X-ray sky at high galactic latitude and far away from sources. The sky coverage is approximately ~22600 sq.deg. The PCA spectrum of CXB in 3-20 keV energy band is adequately approximated by a single power law with photon index Gamma~1.4 and normalization at 1 keV ~9.5 phot/s/cm2/keV/sr. Instrumental background uncertainty precludes accurate RXTE/PCA measurements of the spectrum of cosmic X-ray background at energies above 15 keV and therefore we can not detect the high energy cutoff observed by HEAO-1 A2 experiment. Deep observations of the 6 high latitude points used to model the PCA background provide a coarse measure of the spatial variation of the CXB. The CXB variations are consistent with a fixed spectral shape and variable normalization characterized by a fractional rms amplitude of ~7% on angular scales of ~1 square deg.