No Arabic abstract
We present the 3-8 keV and 8-24 keV number counts of active galactic nuclei (AGN) identified in the NuSTAR extragalactic surveys. NuSTAR has now resolved 33-39% of the X-ray background in the 8-24 keV band, directly identifying AGN with obscuring columns up to approximately 1e25 /cm2. In the softer 3-8 keV band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5e-15 < S(3 - 8 keV)/(erg/cm2/s) < 1e-12 probed by NuSTAR. In the hard 8-24 keV band NuSTAR probes fluxes over the range 2e-14 < S(8-24 keV)/(erg/cm2/s) < 1e-12, a factor of approximately 100 fainter than previous measurements. The 8-24 keV number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15-55 keV number counts measured at higher fluxes S(15-55 keV) > 1e-11 erg/cm2/s, reflecting the evolution of the AGN population between the Swift/BAT local (z<0.1) sample and NuSTARs z~1 sample. CXB synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGN at low redshifts.
We report on the results of active galactic nuclei (AGNs) detection by NuSTAR performed in three extragalactic survey fields (COSMOS, UDS, ECDFS) in three hard bands, namely H1 (8-16 keV), H2 (16-24 keV) and VH (35-55 keV). The aggregated area of the surveys is $sim 2.7$ deg$^2$. While a large number of sources is detected in the H1 band (72 at the $97%$ level of reliability), the H2 band directly probing close to the peak of the Cosmic X-ray Background (CXB) returns four significant detections, and two tentative, although not significant, detections are found in the VH band. All the sources detected above 16 keV are also detected at lower energies. We compute the integral number counts for sources in such bands, which show broad consistency with population synthesis models of the CXB. We furthermore identify two Compton-thick AGNs, one in the COSMOS field, associated with a hard and faint Chandra source, and one in the UDS field, never detected in the X-ray band before. Both sources are at the same redshift $z sim 1.25$, which shifts their Compton-hump into the H1 band, and were previously missed in the usually employed NuSTAR bands, confirming the potential of using the H1 band to discover obscured AGNs at $z > 1$ in deep surveys.
We present the first direct measurements of the rest-frame 10-40 keV X-ray luminosity function (XLF) of Active Galactic Nuclei (AGNs) based on a sample of 94 sources at 0.1 < z <3, selected at 8-24 keV energies from sources in the NuSTAR extragalactic survey program. Our results are consistent with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However, different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give significantly different predictions for the total number of sources in our sample, leading to small, systematic differences in our binned estimates of the XLF. Adopting a model with a lower intrinsic fraction of Compton-thick sources and a larger population of sources with column densities N_H ~ 10^{23-24} /cm2 or a model with stronger Compton reflection component (with a relative normalization of R ~ 2 at all luminosities) can bring extrapolations of the XLF from 2-10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the NuSTAR sources is required to break this degeneracy between the distribution of absorbing column densities and the strength of the Compton reflection component and thus refine our measurements of the XLF. Furthermore, the models that successfully describe the high-redshift population seen by NuSTAR tend to over-predict previous, high-energy measurements of the local XLF, indicating that there is evolution of the AGN population that is not fully captured by the current models.
We present the X-ray source number counts in two energy bands (0.5-2 and 2-10 keV) from a very large source sample: we combine data of six different surveys, both shallow wide field and deep pencil beam, performed with three different satellites (ROSAT, Chandra and XMM-Newton). The sample covers with good statistics the largest possible flux range so far: [2.4*10^-17 - 10^-11] cgs in the soft band and [2.1*10^-16 - 8*10^{-12}]cgs in the hard band. Integrating the flux distributions over this range and taking into account the (small) contribution of the brightest sources we derive the flux density generated by discrete sources in both bands. After a critical review of the literature values of the total Cosmic X--Ray Background (CXB) we conclude that, with the present data, the 94.3%, and 88.8% of the soft and hard CXB can be ascribed to discrete source emission. If we extrapolate the analytical form of the Log N--Log S distribution beyond the flux limit of our catalog in the soft band we find that the flux from discrete sources at ~3*10^-18 cgs is consistent with the entire CXB, whereas in the hard band it accounts for only 93% of the total CXB at most, hinting for a faint and obscured population to arise at even fainter fluxes.
We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared synergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.
The Galactic diffuse X-ray emission (GDXE) is believed to arise from unresolved populations of numerous low-luminosity X-ray binary systems that trace stellar mass distribution of the Milky Way. Many dedicated studies carried out over the last decade suggest that a dominant contributor to GDXE is a population of accreting white dwarfs (WDs). The question arises about relative contribution of different subclasses of accreting WD population, namely non-magnetic WD binaries, magnetic intermediate polars (IPs) and polars, in different regions of the Galaxy: the Galactic center, bulge, and ridge. Recent low-energy (E$<10$ keV) studies indicate that non-magnetic WD binaries, in particular quiescent dwarf novae, provide a major contribution to the diffuse hard X-ray emission of the Galactic bulge. From the other side, previous high energy (E$>10$ keV) X-ray measurements of the bulge and ridge imply a dominant population of magnetic CVs, in particular intermediate polars. In this work we use side aperture of the NuSTAR to probe the diffuse continuum of the inner $sim1-3^{circ}$ of the Galactic bulge, which allows us to constrain possible mixture of soft and hard populations components of the spectrum. We found that GDXE spectrum is well-described by a single-temperature thermal plasma with $kT approx 8$ keV, which supports that the bulge is dominated by quiescent dwarf novae with no evidence of a significant intermediate polar population in the hard X-ray band. We also compare this result with previous NuSTAR measurements of the inner 10 pc and inner 100 pc of the Galactic center.