Do you want to publish a course? Click here

Discovery of Early Optical Emission from GRB 021211

286   0   0.0 ( 0 )
 Added by Derek W. Fox
 Publication date 2003
  fields Physics
and research's language is English
 Authors D. W. Fox




Ask ChatGPT about the research

We report our discovery and early time optical, near-infrared, and radio wavelength follow-up observations of the afterglow of the gamma-ray burst GRB 021211. Our optical observations, beginning 21 min after the burst trigger, demonstrate that the early afterglow of this burst is roughly three magnitudes fainter than the afterglow of GRB 990123 at similar epochs, and fainter than almost all known afterglows at an epoch of 1d after the GRB. Our near-infrared and optical observations indicate that this is not due to extinction. Combining our observations with data reported by other groups, we identify the signature of a reverse shock. This reverse shock is not detected to a 3-sigma limit of 110 uJy in an 8.46-GHz VLA observation at t=0.10d, implying either that the Lorentz factor of the burst gamma <~ 200, or that synchrotron self-absorption effects dominate the radio emission at this time. Our early optical observations, near the peak of the optical afterglow (forward shock), allow us to characterize the afterglow in detail. Comparing our model to flux upper limits from the VLA at later times, t >~ 1 week, we find that the late-time radio flux is suppressed by a factor of two relative to the >~ 80 uJy peak flux at optical wavelengths. This suppression is not likely to be due to synchrotron self-absorption or an early jet break, and we suggest instead that the burst may have suffered substantial radiative corrections.



rate research

Read More

We determine Johnson $B,V$ and Cousins $R,I$ photometric CCD magnitudes for the afterglow of GRB 021211 during the first night after the GRB trigger. The afterglow was very faint and would have been probably missed if no prompt observation had been conducted. A fraction of the so-called ``dark GRBs may thus be just ``optically dim and require very deep imaging to be detected. The early-time optical light curve reported by other observers shows prompt emission with properties similar to that of GRB 990123. Following this, the afterglow emission from $sim 11$ min to $sim 33$ days after the burst is characterized by an overall power-law decay with a slope $1.1pm0.02$ in the $R$ passband. We derive the value of spectral index in the optical to near-IR region to be 0.6$pm$0.2 during 0.13 to 0.8 day after the burst. The flux decay constant and the spectral slope indicate that optical observations within a day after the burst lies between cooling frequency and synchrotron maximum frequency.
303 - A. Klotz , B. Gendre (3 2008
We present the time-resolved optical emission of gamma-ray bursts GRB 060904B and GRB 070420 during their prompt and early afterglow phases. We used time resolved photometry from optical data taken by the TAROT telescope and time resolved spectroscopy at high energies from the Swift spacecraft instrument. The optical emissions of both GRBs are found to increase from the end of the prompt phase, passing to a maximum of brightness at t_{peak}=9.2 min and 3.3 min for GRB 060904B and GRB 070420 respectively and then decrease. GRB 060904B presents a large optical plateau and a very large X-ray flare. We argue that the very large X-flare occurring near t_{peak} is produced by an extended internal engine activity and is only a coincidence with the optical emission. GRB 070420 observations would support this idea because there was no X-flare during the optical peak. The nature of the optical plateau of GRB 060904B is less clear and might be related to the late energy injection.
We present broadband multi-wavelength observations of GRB 080310 at redshift z = 2.43. This burst was bright and long-lived, and unusual in having extensive optical and near IR follow-up during the prompt phase. Using these data we attempt to simultaneously model the gamma-ray, X-ray, optical and IR emission using a series of prompt pulses and an afterglow component. Initial attempts to extrapolate the high energy model directly to lower energies for each pulse reveal that a spectral break is required between the optical regime and 0.3 keV to avoid over predicting the optical flux. We demonstrate that afterglow emission alone is insufficient to describe all morphology seen in the optical and IR data. Allowing the prompt component to dominate the early-time optical and IR and permitting each pulse to have an independent low energy spectral indices we produce an alternative scenario which better describes the optical light curve. This, however, does not describe the spectral shape of GRB 080310 at early times. The fit statistics for the prompt and afterglow dominated models are nearly identical making it difficult to favour either. However one enduring result is that both models require a low energy spectral index consistent with self absorption for at least some of the pulses identified in the high energy emission model.
The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 050319 starting 25.4 seconds after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. Our well sampled light curve of the early optical afterglow is composed of 32 points (derived from 70 exposures) that measure the flux decay during the first hour after the GRB. The GRB 050319 light curve measured by RAPTOR can be described as a relatively gradual flux decline (power-law index alpha = -0.37) with a transition, at about 400 s after the GRB, to a faster flux decay (alpha = -0.91). The addition of other available measurements to the RAPTOR light curve suggests that another emission component emerged after 10^4 s. We hypothesize that the early afterglow emission is powered by extended energy injection or delayed reverse shock emission followed by the emergence of forward shock emission.
We present Follow-Up Network for Gamma-Ray Bursts (FUN GRB) Collaboration observations of the optical afterglow of GRB 021211 made between 143 seconds and 102 days after the burst. Our unique data set includes the earliest filtered detections and color information for an afterglow in the pre-Swift era. We find that the afterglow is best described by (1) propagation through a wind-swept medium, (2) a cooling break that is blueward of the observed optical frequencies, and (3) a hard electron energy distribution. However, superimposed on this standard model behavior we find significant chromatic variations within the first few hours after the burst. We consider possible reasons for these variations, including the possibility that they are due to a dust echo. Finally, we constrain physical parameters that describe the afterglow and surrounding medium for a variety of scenarios and find that GRB 021211s afterglow is faint for a combination of 3-4 reasons: (1) a low fraction of energy in relativistic electrons, (2) a low density for the wind-swept medium, implying either a low mass-loss rate and/or a high wind velocity for the progenitor, (3) a wide opening/viewing angle for the jet, and possibly (4) moderate source frame extinction. The jet appears to be significantly far from equipartition and magnetically dominated. More extre
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا