No Arabic abstract
The results of astrometric and photometric investigations of the open cluster NGC 7243 are presented. Proper motions of 2165 stars with root-mean-square error of 1.1 mas/yr were obtained by means of PDS scanning of astrometric plates covering the time interval of 97 years. A total of 211 cluster members down to V=15.5 mag have been identified. V and B magnitudes have been determined for 2118 and 2110 stars respectively. Estimations of mass (348Mo < M < 522Mo), age (t=2.5x10^8 yr), distance (r=698 pc) and reddening (E(B-V)=0.24) of the cluster NGC 7243 have been made.
We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets, and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550.6+495611. Furthermore, we detected and analysed 37 new eclipsing binary stars in the studied region. The best fit parameters and light curves of all systems are given. Finally, we detected and analysed 26 new, presumably pulsating variable stars in the studied region. The follow-up investigation of these objects, including spectroscopic measurements of the exoplanet candidate, is currently planned.
Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and H alpha photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by <E(B-V)> = 0.92 +/- 0.05 and 0.74 +/- 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (Rv,cl = 5.2 +/- 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 +/- 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 +/- 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 Myr and 1.5 - 2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF (Gamma_NGC 1624 = -2.0 +/- 0.2 and Gamma_NGC 1931 = -2.0 +/- 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters seems not to be far different from that in the solar neighborhood.
The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68$pm$0.08 km s$^{-1}$ and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.
We present CCD UBVI photometry of the intermediate age open cluster NGC 6939 for three TNG-DOLORES fields. The fields A and B cover the center of the cluster; the third one is located about 30 arcmin away, and is used for field stars decontamination. The V-I, B-V and U-B color-magnitude diagrams (CMDs), obtained joining very different exposures show: i) a Main Sequence (MS) extending down to V = 24, much deeper (~ 5 magnitudes) than any previous study; ii) a clearly defined Turn Off (TO) and iii) a well populated Red Giant Clump (RC) at about V = 13.
We have observed four red clump stars in the very old and metal-rich open cluster NGC 6791 to derive its metallicity, using the high resolution spectrograph SARG mounted on the TNG. Using a spectrum synthesis technique we obtain an average value of [Fe/H] = +0.47 (+/- 0.04, rms=0.08) dex. Our method was tested on mu Leo, a well studied metal-rich field giant. We also derive average oxygen and carbon abundances for NGC 6791 from synthesis of [O I] at 6300 A and C_2 at 5086 A, finding [O/Fe] =~ -0.3 and [C/Fe] =~ -0.2.