Do you want to publish a course? Click here

Spectroscopic Study of the Open Cluster NGC 6811

183   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68$pm$0.08 km s$^{-1}$ and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.



rate research

Read More

In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.
High-dispersion spectra of 333 stars in the open cluster NGC 6819, obtained using the HYDRA spectrograph on the WIYN 3.5m telescope, have been analyzed to determine the abundances of iron and other metals from lines in the 400 A region surrounding the Li 6708 A line. Our spectra, with signal-to-noise per pixel (SNR) ranging from 60 to 300, span the luminosity range from the tip of the red giant branch to a point two magnitudes below the top of the cluster turnoff. We derive radial and rotational velocities for all stars, as well as [Fe/H] based on 17 iron lines, [Ca/H], [Si/H], and [Ni/H] in the 247 most probable, single members of the cluster. Input temperature estimates for model atmosphere analysis are provided by (B-V) colors merged from several sources, with individual reddening corrections applied to each star relative to a cluster mean of E(B-V) = 0.16. Extensive use is made of ROBOSPECT, an automatic equivalent width measurement program; its effectiveness on large spectroscopic samples is discussed. From the sample of likely single members, [Fe/H] = -0.03 +/- 0.06, where the error describes the median absolute deviation about the sample median value, leading to an internal precision for the cluster below 0.01 dex. The final uncertainty in the cluster abundance is therefore dominated by external systematics due to the temperature scale, surface gravity, and microturbulent velocity, leading to [Fe/H] = -0.02 +/- 0.02 for a sub-sample restricted to main sequence and turnoff stars. This result is consistent with our recent intermediate-band photometric determination of a slightly subsolar abundance for this cluster. [Ca/Fe], [Si/Fe], and [Ni/Fe] are determined to be solar within the uncertainties. NGC 6819 has an abundance distribution typical of solar metallicity thin disk stars in the solar neighborhood.
From $uvby-beta$ photometry of the open clusters NGC 6811 (75 stars), and NGC 6830 (19 stars) we were able to determine membership of the stars to each cluster, and fix the age and reddening for each. Since several short period stars have recently been found, we have carried out a study of these variables.
In an optical color-magnitude diagram sub-subgiants (SSGs) lie red of the main sequence and fainter than the base of the red giant branch in a region not easily populated by standard stellar-evolution pathways. In this paper, we present multi-epoch radial velocities for five SSG candidates in the old and metal-rich open cluster NGC 6791 (8 Gyr, [Fe/H] = +0.30). From these data we are able to make three-dimensional kinematic membership determinations and confirm four SSG candidates to be likely cluster members. We also identify three member SSGs as short-period binary systems and present their orbital solutions. These are the first SSGs with known three-dimensional kinematic membership, binary status, and orbital parameters since the two SSGs in M67 studied by Mathieu et al. 2003. We also remark on the other properties of these stars including photometric variability, H$alpha$ emission, and X-ray luminosity. The membership confirmation of these SSGs in NGC 6791 strengthens the case that SSGs are a new class of nonstandard stellar evolution products, and that a physical mechanism must be found that explains the evolutionary paths of these stars.
We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium and high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H]=-1.84+-0.02 and an alpha-enhancement of +0.38+-0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular we found a Na-O anti-correlation and Na-Al correlation. The cluster contains only 15% of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic Halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. A anti-relation between the light s-process element Y and Na may also be present.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا