Do you want to publish a course? Click here

Probing the Ionization Structure of the Narrow Line Region in the Seyfert 1 Galaxy NGC 4151

230   0   0.0 ( 0 )
 Added by Steven B. Kraemer
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the distribution of [O III] $lambda$5007 and [O II] $lambda$3727 emission in the Narrow Line Region (NLR) of the Seyfert 1 galaxy NGC 4151. While the NLR of NGC 4151 exhibits an overall structure consistent with the unified model of Seyfert galaxies, narrow-band [O III] and [O II] images obtained with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope reveal significant emission from outside the the emission-line bi-cone. The [O III]/[O II] ratios are lower in these regions, consistent with a weaker ionizing flux. We performed a photoionization modeling analysis of the emission-line gas within a series of annuli, centered on the the central continuum source, with inner radii from 13 to 90 pc. The gas is ionized by radiation that has been attenuated by a relatively highly-ionized absorber (HABS), which completely covers the central source, and a lower-ionization absorber (LABS), which has a covering factor ranging from 0 to 1. We found that the [O III]/[O II] ratios are well fit by assuming that, within each segment of an annulus, some fraction of the NLR gas is completely within the shadow of LABS, while the rest is irradiated by the continuum filtered only by HABS. This suggests that the structure of the NLR is due to filtering of the ionizing radiation by ionized gas, consistent with disk-wind models. One possible scenario is that the low-ionization absorbers are dense knots of gas swept up by a wind.



rate research

Read More

This work studies the optical emission line properties and physical conditions of the narrow line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1). Our results show that the flux carried out by the narrow component of H-beta is, on average, 50% of the total line flux. As a result, the [OIII] 5007/H-beta ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [OIII] 5007/H-beta ratio and the weakness of low-ionization lines of NLS1s. Variation of the relative proportion of these two type of clouds nicely reproduce the dispersion of narrow line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1s and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission line ratios between these two groups can be explained in terms of the shape of the input ionizing continuum. Narrow emission line ratios of NLS1s are better reproduced by a steep power-law continuum in the EUV -- soft X-ray region, with spectral index alpha ~ -2. Flatter spectral indices (alpha ~ -1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1s, which show that these objects are characterized by steeper power-law indices than those of Sy1 galaxies with strong broad optical lines.
We present the first results of the Hubble Space Telescope/Faint Object Camera long-slit spectroscopy of the inner 8 of the Narrow Line Region of NGC 4151 at a spatial resolution of 0.029. The emission gas is characterized by an underlying general orderly behaviour, consistent with galactic rotation, over which are superposed kinematically distinct and strongly localized emission structures. High velocity components shifted up to ~ 1500 km/s from the systemic velocity are seen, associated with individual clouds located preferentially along the edges of the radio knots. Off-nuclear blue continuum emission is also observed, associated with the brightest emission line clouds. Emission line ratios like [NeIII]3869/[OII]3727, and [OII]3727/Hbeta are observed to vary substantially between individual clouds. We advance the general picture that, as in other Seyfert galaxies observed with HST (e.g., NGC 1068, Mrk 573), the interaction of the radio jet with the ambient gas strongly influences both the morphology and the physical conditions of the NLR.
We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models consider the radiative force due to the active galactic nucleus (AGN), gravitational forces from the supermassive black hole (SMBH), nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR clouds interacting with a hot ambient medium. The derived velocity profile of the NLR gas is compared to that obtained from our previous kinematic models of the NLR using a simple biconical geometry for the outflowing NLR clouds. The results show that the acceleration profile due to radiative line driving is too steep to fit the data and that gravitational forces along cannot slow the clouds down, but with drag forces included, the clouds can slow down to the systemic velocity over the range 100--400 pc, as observed. However, we are not able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc, indicating the need for additional dynamical studies.
The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 cm^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا