No Arabic abstract
We have compared the intensity distribution of molecular line emission with that of dust continuum emission, and modeled molecular line profiles in three different preprotostellar cores in order to test how dynamical evolution is related to chemical evolution, and whether we can use different chemical tracers to identify specific dynamical evolutionary stages. We used dust continuum emission to obtain the input density and temperature structures by calculating radiative transfer of dust emission. Our results show that chemical evolution is dependent on dynamical processes, which can give different evolutionary timescales, as well as the density structure of the core.
Understanding the depletion of heavy elements is a fundamental step towards determining the structure of pre-protostellar cores just prior to collapse. We study the dependence of the NO abundance on position in the pre-protostellar cores L1544 and L183. We observed the 150 GHz and 250~GHz transitions of NO and the 93 GHz transitions of NTHP towards L1544 and L183 using the IRAM 30 m telescope. We compare the variation of the NO column density with position in these objects with the H column density derived from dust emission measurements. We find that NO behaves differently from NTHP and appears to be partially depleted in the high density core of L1544. Other oxygen-containing compounds are also likely to be partially depleted in dense-core nuclei. The principal conclusions are that: the prestellar core L1544 is likely to be carbon-rich; the nitrogen chemistry did not reach equilibrium prior to gravitational collapse, and nitrogen is initially (at densities of the order of $10^4$~cm$^{-3}$) mainly in atomic form; the grain sticking probabilities of atomic C, N and, probably, O are significantly smaller than unity.
High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{rm frac}^{{rm N}_2{rm H}^+} equiv {rm N}_2{rm D}^+/{rm N}_2{rm H}^+ gtrsim 0.1$) is longer than the free-fall time, possibly ten times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N$_2$H$^+$ and N$_2$D$^+$. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N$_2$D$^+$ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H$_2$, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios ($lesssim 0.01$) and/or multiple free-fall times ($gtrsim 3$) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.
We report on a survey of h2d towards protostellar cores in low-mass star formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two observed sources have significant ($gsim 5sigma$) h2d emission. Ion-molecule chemistry, which preferentially enhances deuterium in molecules above its cosmological value of scnot{1.6}{-5} sufficiently explains these abundances. NH2D/NH3 ratios towards Class 0 sources yields information about the ``fossil remnants from the era prior to the onset of core collapse and star formation. We compare our observations with predictions of gas-phase chemical networks.
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding the UCHII region IRAS 20293+3952. We performed high angular resolution observations with the IRAM Plateau de Bure Interferometer (PdBI) of the ortho-NH2D 1_{11}-1_{01} line at 85.926 GHz and compared them with previously reported VLA NH3 data. We detected strong NH2D emission toward the pre-protostellar cores identified in NH3 and dust emission, all located in the vicinity of the UCHII region IRAS 20293+3952. We found high values of Dfrac~0.1-0.8 in all the pre-protostellar cores and low values, Dfrac<0.1, associated with young stellar objects. The high values of Dfrac in pre-protostellar cores could be indicative of evolution, although outflow interactions and UV radiation could also play a role.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.