Do you want to publish a course? Click here

Physics Fundamentals of Luminous Accretion Disks Around Black Holes

152   0   0.0 ( 0 )
 Added by Omer Blaes
 Publication date 2002
  fields Physics
and research's language is English
 Authors O. M. Blaes




Ask ChatGPT about the research

These lectures provide an overview of the theory of accretion disks with application to bright sources containing black holes. I focus on the fundamental physics of these flows, stressing modern developments and outstanding questions wherever possible. After a review of standard Shakura-Sunyaev based models and their problems and uncertainties, I describe the basic principles that determine the overall spectral energy distribution produced by the flow. I then describe the physics of angular momentum transport in black hole accretion disks, stressing the important role of magnetic fields. Finally, I discuss the physics of radiation magnetohydrodynamics and how it might affect the overall flow structure in the innermost regions near the black hole.



rate research

Read More

We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus centered at $50-80$ gravitational radii with self-consistent turbulence initially generated by the magneto-rotational instability. We study cases with and without net vertical magnetic flux. The inner regions of all disks have radiation pressure $sim 10^4-10^6$ times the gas pressure. Non-axisymmetric density waves that steepen into spiral shocks form as gas flows towards the black hole. In simulations without net vertical magnetic flux, Reynolds stress generated by the spiral shocks are the dominant mechanism to transfer angular momentum. Maxwell stress from MRI turbulence can be larger than the Reynolds stress only when net vertical magnetic flux is sufficiently large. Outflows are formed with speed $sim 0.1-0.4c$. When the accretion rate is smaller than $sim 500 L_{Edd}/c^2$, outflows start around $10$ gravitational radii and the radiative efficiency is $sim 5%-7%$ with both magnetic field configurations. With accretion rate reaching $1500 L_{Edd}/c^2$, most of the funnel region close to the rotation axis becomes optically thick and the outflow only develops beyond $50$ gravitational radii. The radiative efficiency is reduced to $1%$. We always find the kinetic energy luminosity associated with the outflow is only $sim 15%-30%$ of the radiative luminosity. The mass flux lost in the outflow is $sim 15%-50%$ of the net mass accretion rates. We discuss implications of our simulation results on the observational properties of these disks.
We study the progress of the theory of accretion disks around black holes in last twenty five years and explain why advective disks are the best bet in explaining varied stationary and non-stationary observations from black hole candidates. We show also that the recently proposed advection dominated flows are incorrect.
We show that with the wind/jet activity, the spectral index of hard X-ray is changed in galactic microquasars. When mass loss takes place, the spectrum becomes softer and when mass gain takes place, the spectrum becomes harder. We present examples of such changes in GRS1915+105.
Rotating black holes without equatorial reflection symmetry can naturally arise in effective low-energy theories of fundamental quantum gravity, in particular, when parity-violating interactions are introduced. Adopting a theory-agnostic approach and considering a recently proposed Kerr-like black hole model, we investigate the structure and properties of accretion disk around a rotating black hole without reflection symmetry. In the absence of reflection symmetry, the accretion disk is in general a curved surface in shape, rather than a flat disk lying on the equatorial plane. Furthermore, the parameter $epsilon$ that controls the reflection asymmetry would shrink the size of the innermost stable circular orbits, and enhance the efficiency of the black hole in converting rest-mass energy to radiation during accretion. In addition, we find that spin measurements based on the gravitational redshift observations of the disk, assuming a Kerr geometry, may overestimate the true spin values if the central object is actually a Kerr-like black hole with conspicuous equatorial reflection asymmetry.
The geometry of the accretion flow around stellar mass and supermassive black holes depends on the accretion rate. Broad iron emission lines originating from the irradiation of cool matter can indicate that there is an inner disk below a hot coronal flow.These emission lines have been detected in X-ray binaries. Observations with the Chandra X-ray Observatory, XMM Newton and Suzaku have confirmed the presence of these emission lines also in a large fraction of Seyfert-1 active galactic nuclei (AGN). We investigate the accretion flow geometry for which broad iron emission lines can arise in hard and soft spectral state. We study an ADAF-type coronal flow, where the ions are viscously heated and electrons receive their heat only by collisions from the ions and are Compton cooled by photons from an underlying cool disk. For a strong mass flow in the disk and the resulting strong Compton cooling only a very weak coronal flow is possible. This limitation allows the formation of ADAF-type coronae above weak inner disks in the hard state, but almost rules them out in the soft state. The observed hard X-ray luminosity in the soft state, of up to 10% or more of the total flux, indicates that there is a heating process that directly accelerates the electrons. This might point to the action of magnetic flares of disk magnetic fields reaching into the corona. Such flares have also been proposed by observations of the spectra of X-ray black hole binaries without a thermal cut-off around 200 keV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا