No Arabic abstract
We study the progress of the theory of accretion disks around black holes in last twenty five years and explain why advective disks are the best bet in explaining varied stationary and non-stationary observations from black hole candidates. We show also that the recently proposed advection dominated flows are incorrect.
A concise, somewhat personal, review of the problem of superfluidity and quantum criticality in regular and disordered interacting Bose systems is given, concentrating on general features and important symmetries that are exhibited in different parts of the phase diagram, and that govern the different possible types of critical behavior. A number of exact results for various insulating phase boundaries, which may be used to constrain the results of numerical simulations, can be derived using large rare region type arguments. The nature of the insulator-superfluid transition is explored through general scaling arguments, exact model calculations in one dimension, numerical results in two dimensions, and approximate renormalization group results in higher dimensions. Experiments on He-4 adsorbed in porous Vycor glass, on thin film superconductors, and magnetically trapped atomic vapors in a periodic optical potential, are used to illustrate many of the concepts.
In 1995, a team of physicists from the Budker Institute of Nuclear Physics in Novosibirsk was able to observe the splitting of a photon in the Coulomb field of an atomic nucleus for the first time, and reported the preliminary results of this experiment at two conferences. This was an extremely difficult experiment as the probability of the process is very small. It took another seven years to publish the final results. This story has been further developed recently. The ATLAS detector at the Large Hadron Collider observed in ultra-peripheral heavy ion collisions a process related to the photon splitting - light by light scattering. In addition, a team of Italian, Polish and British astrophysicists obtained the first observational evidence of the existence of vacuum birefringence in the magnetic field of an isolated neutron star - another physical phenomenon also related to the photon splitting. These new developments triggered this essay, written several years ago.
The analysis of the thermal spectrum of geometrically thin and optically thick accretion disks of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximate the disk as infinitesimally thin, while in reality the disk thickness is finite and increases as the black hole mass accretion rate increases. Here we present an XSPEC model to calculate the multi-temperature blackbody spectrum of a thin accretion disk of finite thickness around a Kerr black hole. We test our new model with an RXTE observation of the black hole binary GRS 1915+105. We find that the spin value inferred with the new model is slightly higher than the spin value obtained with a model with an infinitesimally thin disk, but the difference is small and the effect is currently subdominant with respect to other sources of uncertainties in the final spin measurement.
In this paper we first investigate the equatorial circular orbit structure of Kerr black holes with scalar hair (KBHsSH) and highlight their most prominent features which are quite distinct from the exterior region of ordinary bald Kerr black holes, i.e. peculiarities that arise from the combined bound system of a hole with an off-center, self-gravitating distribution of scalar matter. Some of these traits are incompatible with the thin disk approach, thus we identify and map out various regions in the parameter space respectively. All the solutions for which the stable circular orbital velocity (and angular momentum) curve is continuous are used for building thin and optically thick disks around them, from which we extract the radiant energy fluxes, luminosities and efficiencies. We compare the results in batches with the same spin parameter $j$ but different normalized charges, and the profiles are richly diverse. Because of the existence of a conserved scalar charge, $Q$, these solutions are non-unique in the $(M, J)$ parameter space. Furthermore, $Q$ cannot be extracted asymptotically from the metric functions. Nevertheless, by constraining the parameters through different observations, the luminosity profile could in turn be used to constrain the Noether charge and characterize the spacetime, should KBHsSH exist.
We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus centered at $50-80$ gravitational radii with self-consistent turbulence initially generated by the magneto-rotational instability. We study cases with and without net vertical magnetic flux. The inner regions of all disks have radiation pressure $sim 10^4-10^6$ times the gas pressure. Non-axisymmetric density waves that steepen into spiral shocks form as gas flows towards the black hole. In simulations without net vertical magnetic flux, Reynolds stress generated by the spiral shocks are the dominant mechanism to transfer angular momentum. Maxwell stress from MRI turbulence can be larger than the Reynolds stress only when net vertical magnetic flux is sufficiently large. Outflows are formed with speed $sim 0.1-0.4c$. When the accretion rate is smaller than $sim 500 L_{Edd}/c^2$, outflows start around $10$ gravitational radii and the radiative efficiency is $sim 5%-7%$ with both magnetic field configurations. With accretion rate reaching $1500 L_{Edd}/c^2$, most of the funnel region close to the rotation axis becomes optically thick and the outflow only develops beyond $50$ gravitational radii. The radiative efficiency is reduced to $1%$. We always find the kinetic energy luminosity associated with the outflow is only $sim 15%-30%$ of the radiative luminosity. The mass flux lost in the outflow is $sim 15%-50%$ of the net mass accretion rates. We discuss implications of our simulation results on the observational properties of these disks.