Do you want to publish a course? Click here

A near-infrared survey for Galactic Wolf-Rayet stars

110   0   0.0 ( 0 )
 Added by Nicole Homeier
 Publication date 2002
  fields Physics
and research's language is English
 Authors N. L. Homeier




Ask ChatGPT about the research

Initial results, techniques, and rationale for a near-infrared survey of evolved emission-line stars toward the Galactic Center are presented. We use images taken through narrow-band emission-line and continuum filters to select candidates for spectroscopic follow-up. The filters are optimized for the detection of Wolf-Rayet stars and other objects which exhibit emission-lines in the 2 micron region. Approximately three square degrees along the Galactic plane have been analyzed in seven narrow-filters (four emission-lines and three continuum). Four new Wolf-Rayet stars have been found which are the subject of a following paper.



rate research

Read More

65 - N. Homeier 2002
Most of the Milky Ways evolved massive stellar population is hidden from view. We can attempt to remedy this situation with near-infrared observations, and in this paper we present our method for detecting Wolf-Rayet stars in highly extincted regions and apply it to the inner Galaxy. Using narrow band filters at K-band wavelengths, we demonstrate how WR stars can be detected in regions where they are optically obscured. Candidates are selected for spectroscopic follow-up from our relative line and continuum photometry. The final results of applying this method with a NIR survey in the Galactic plane will provide a more complete knowledge of the structure of the galactic disk, the role of metallicity in massive stellar evolution, and environments of massive star formation. In this paper we briefly describe the survey set-up and report on recent progress. We have discovered four emission-line objects in the inner Galaxy: two with nebular emission lines, and two new WR stars, both of late WC subtype.
68 - C. Cappa (IAR , FCAG , UNLP 2004
We report the results of a survey of radio continuum emission of Galactic Wolf-Rayet stars north of declination -46 degrees. The observations were obtained at 8.46 GHz (3.6cm) using the Very Large Array (VLA), with an angular resolution of about 6 x 9 arcsec and typical rms noise of 0.04 mJy/beam. Our survey of 34 WR stars resulted in 15 definite and 5 probable detections, 13 of these for the first time at radio wavelengths. All detections are unresolved. Time variations in flux are confirmed in the cases of WR98a, WR104, WR105 and WR125. WR79a and WR89 are also variable in flux and we suspect they are also non-thermal emitters. Thus, of our sample 20-30% of the detected stars are non-thermal emiters. Average mass loss rates determinations obtained excluding definite and suspected non-thermal cases give similar values for WN (all subtypes) and WC5-7 stars, while a lower value was obtained for WC8-9 stars. Uncertainties in stellar distances largely contribute to the observed scatter in mass loss rates. Upper limits to the mass loss rates were obtained in cases of undetected sources or for sources which probably show additional non-thermal emission.
We have investigated and applied machine-learning algorithms for Infrared Colour Selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the GLIMPSE catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broadband photometric magnitudes ($J$, $H$ and $K_s$ from 2MASS, and the four textit{Spitzer}/IRAC bands). The algorithms tested in this pilot study are variants of the $k$-Nearest Neighbours ($k$-NN) approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and, (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of 4 new WR stars.
We report the results of a high angular resolution near-infrared survey of dusty Wolf-Rayet stars using the Keck-1 Telescope, including new multi-wavelength images of the pinwheel nebulae WR 98a, WR 104, and WR 112. Angular sizes were measured for an additional 8 dusty WR stars using aperture masking interferometry, allowing us to probe characteristics sizes down to ~20 milliarcseconds (~40 AU for typical sources). With angular sizes and specific fluxes, we can directly measure the wavelength-dependent surface brightness and size relations for our sample. We discovered tight correlations of these properties within our sample which could not be explained by simple spherically-symmetric dust shells or even the more realistic ``pinwheel nebula (3-D) radiative transfer model, when using optical constants of Zubko. While the tightly-correlated surface brightness relations we uncovered offer compelling indirect evidence of a shared and distinctive dust shell geometry amongst our sample, long-baseline interferometers should target the marginally-resolved objects in our sample in order to conclusively establish the presence or absence of the putative underyling colliding wind binaries thought to produce the dust shells around WC Wolf-Rayets.
It is now well established that the majority of massive stars reside in multiple systems. However, the effect of multiplicity is not sufficiently understood, resulting in a plethora of uncertainties about the end stages of massive-star evolution. In order to investigate these uncertainties, it is useful to study massive stars just before their demise. Classical Wolf-Rayet stars represent the final end stages of stars at the upper-mass end. The multiplicity fraction of these stars was reported to be ${sim}0.4$ in the Galaxy but no correction for observational biases has been attempted. The aim of this study is to conduct a homogeneous radial-velocity survey of a magnitude-limited ($V$ $leq 12$) sample of Galactic Wolf-Rayet stars to derive their bias-corrected multiplicity properties. The present paper focuses on 12 northern Galactic carbon-rich (WC) Wolf-Rayet stars observable with the 1.2m Mercator telescope on the island of La Palma. We homogeneously measured relative radial velocities (RVs) for carbon-rich Wolf-Rayet stars using cross-correlation. Variations in the derived RVs were used to flag binary candidates. We investigated probable orbital configurations and provide a first correction of observational biases through Monte-Carlo simulations. Of the 12 northern Galactic WC stars in our sample, seven show peak-to-peak RV variations larger than 10 km s$^{-1}$, which we adopt as our detection threshold. This results in an observed spectroscopic multiplicity fraction of 0.58 with a binomial error of 0.14. In our campaign, we find a clear lack of short-period (P~$<~sim$100,d), indicating that a large number of Galactic WC binaries likely reside in long-period systems. Finally, our simulations show that at the 10% significance level, the intrinsic multiplicity fraction of the Galactic WC population is at least 0.72.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا