Do you want to publish a course? Click here

Supersymmetric dark matter in M31: can one see neutralino annihilation with CELESTE?

94   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is widely believed that dark matter exists within galaxies and clusters of galaxies. Under the assumption that this dark matter is composed of the lightest, stable supersymmetric particle, assumed to be the neutralino, the feasibility of its indirect detection via observations of a diffuse gamma-ray signal due to neutralino annihilations within M31 is examined. To this end, first the dark matter halo of the close spiral galaxy M31 is modeled from observations, then the resultant gamma-ray flux is estimated within supersymmetric model configurations. We conclude that under favorable conditions such as the rapid accretion of neutralinos on the central black hole in M31 and/or the presence of many clumps inside its halo with $r^{-3/2}$ inner profiles, a neutralino annihilation gamma-ray signal is marginally detectable by the ongoing collaboration CELESTE.



rate research

Read More

If dark matter is made of neutralinos, annihilation of such Majorana particles should produce high energy cosmic rays, especially in galaxy halo high density regions like galaxy centres. M31 (Andromeda) is our nearest neighbour spiral galaxy, and both its high mass and its low distance make it a source of interest for the indirect search for dark matter through gamma-ray detection. The ground based atmospheric Cherenkov telescope CELESTE observed M31 from 2001 to 2003, in the mostly unexplored energy range 50-500 GeV. These observations provide an upper limit on the flux above 50 GeV around $10^{-10}rm{cm}^{-2}rm{s}^{-1}$ in the frame of supersymmetric dark matter, and more generally on any gamma emission from M31.
53 - L. Bergstrom 1998
We investigate the possibility to detect neutralino dark matter in a scenario in which the galactic dark halo is clumpy. We find that under customary assumptions on various astrophysical parameters, the antiproton and continuum gamma-ray signals from neutralino annihilation in the halo put the strongest limits on the clumpiness of a neutralino halo. We argue that indirect detection through neutrinos from the Earth and the Sun should not be much affected by clumpiness. We identify situations in parameter space where the gamma-ray line, positron and diffuse neutrino signals from annihilations in the halo may provide interesting signals in upcoming detectors.
We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter. The mixed axion/neutralino CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as sim (f_a/N)/m_{axino}^{3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In mixed axion/neutralino CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.
The nature of the cosmic dark matter is unknown. The most compelling hypothesis is that dark matter consists of weakly interacting massive particles (WIMPs) in the 100 GeV mass range. Such particles would annihilate in the galactic halo, producing high-energy gamma rays which might be detectable in gamma ray telescopes such as the GLAST satellite. We investigate the ability of GLAST to distinguish between WIMP annihilation sources and astrophysical sources. Focusing on the galactic satellite halos predicted by the cold dark matter model, we find that the WIMP gamma-ray spectrum is nearly unique; separation of the brightest WIMP sources from known source classes can be done in a convincing way by including spectral and spatial information. Candidate WIMP sources can be further studied with Imaging Atmospheric Cerenkov Telescopes. Finally, Large Hadron Collider data might have a crucial impact on the study of galactic dark matter.
Upcoming $gamma$-ray satellites will search for Dark Matter annihilations in Milky Way substructures (or clumps). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of Dark Matter in substructures, and on the distribution of substructures in the Milky Way halo. By adopting simplified, yet rather extreme, prescriptions for these quantities, we compute the number of sources that can be detected with upcoming experiments such as GLAST, and show that, for the most optimistic particle physics setup ($m_chi=40$ GeV and annihilation cross section $sigma v = 3 times 10^{-26}$ cm$^3$ s$^{-1}$), the result ranges from zero to $sim$ hundred sources, all with mass above $10^{5}Modot$. However, for a fiducial DM candidate with mass $m_chi=100$ GeV and $sigma v = 10^{-26}$ cm$^3$ s$^{-1}$, at most a handful of large mass substructures can be detected at $5 sigma$, with a 1-year exposure time, by a GLAST-like experiment. Scenarios where micro-clumps (i.e. clumps with mass as small as $10^{-6}Modot$) can be detected are severely constrained by the diffuse $gamma$-ray background detected by EGRET.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا