Do you want to publish a course? Click here

Can Astrophysical Gamma Ray Sources Mimic Dark Matter Annihilation in Galactic Satellites?

84   0   0.0 ( 0 )
 Added by Edward A. Baltz
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of the cosmic dark matter is unknown. The most compelling hypothesis is that dark matter consists of weakly interacting massive particles (WIMPs) in the 100 GeV mass range. Such particles would annihilate in the galactic halo, producing high-energy gamma rays which might be detectable in gamma ray telescopes such as the GLAST satellite. We investigate the ability of GLAST to distinguish between WIMP annihilation sources and astrophysical sources. Focusing on the galactic satellite halos predicted by the cold dark matter model, we find that the WIMP gamma-ray spectrum is nearly unique; separation of the brightest WIMP sources from known source classes can be done in a convincing way by including spectral and spatial information. Candidate WIMP sources can be further studied with Imaging Atmospheric Cerenkov Telescopes. Finally, Large Hadron Collider data might have a crucial impact on the study of galactic dark matter.



rate research

Read More

In the frame of indirect dark matter searches we investigate the flux of high-energy $gamma$-ray photons produced by annihilation of dark matter in caustics within our Galaxy under the hypothesis that the bulk of dark matter is composed of the lightest supersymmetric particles. Unfortunately, the detection of the caustics annihilation signal with currently available instruments is rather challenging. Indeed, with realistic assumptions concerning particle physics and cosmology, the $gamma $-ray signal from caustics is below the detection threshold of both $check {rm C}$erenkov telescopes and satellite-borne experiments. Nevertheless, we find that this signal is more prominent than that expected if annihilation only occurs in the smoothed Galactic halo, with the possible exception of a $sim 15^{circ}$ circle around the Galactic center if the mass density profile of our Galaxy exhibits a sharp cusp there. We show that the angular distribution of this $gamma$-ray flux changes significantly if DM annihilation preferentially occurs within virialized sub-halos populating our Galaxy rather than in caustics.
The diffuse galactic EGRET gamma ray data show a clear excess for energies above 1 GeV in comparison with the expectations from conventional galactic models. The excess is seen with the same spectrum in all sky directions, as expected for Dark Matter (DM) annihilation. This hypothesis is investigated in detail. The energy spectrum of the excess is used to limit the WIMP mass to the 50-100 GeV range, while the sky maps are used to determine the halo structure, which is consistent with a triaxial isothermal halo with additional enhancement of Dark Matter in the disc. The latter is strongly correlated with the ring of stars around our galaxy at a distance of 14 kpc, thought to originate from the tidal disruption of a dwarf galaxy. It is shown that this ring of DM with a mass of $approx 2cdot 10^{11} M_odot$ causes the mysterious change of slope in the rotation curve at $R=1.1R_0$ and the large local surface density of the disc. The total mass of the halo is determined to be $3cdot 10^{12} M_odot$. A cuspy profile is definitely excluded to describe the gamma ray data. These signals of Dark Matter Annihilation are compatible with Supersymmetry for boost factors of 20 upwards and have a statistical significance of more than $10sigma$ in comparison with the conventional galactic model. The latter combined with all features mentioned above provides an intriguing hint that the EGRET excess is indeed a signal from Dark Matter Annihilation.
Dark matter annihilation into charged particles is necessarily accompanied by gamma rays, produced via radiative corrections. Internal bremsstrahlung from the final state particles can produce hard gamma rays up to the dark matter mass, with an approximately model-independent spectrum. Focusing on annihilation into electrons, we compute robust upper bounds on the dark matter self annihilation cross section $<sigma_A v >_{e^+e^-}$ using gamma ray data from the Milky Way spanning a wide range of energies, $sim10^{-3} - 10^4$ GeV. We also compute corresponding bounds for the other charged leptons. We make conservative assumptions about the astrophysical inputs, and demonstrate how our derived bounds would be strengthened if stronger assumptions about these inputs are adopted. The fraction of hard gamma rays near the endpoint accompanying annihilation to $e^+e^-$ is only a factor of $alt 10^2$ lower than for annihilation directly to monoenergetic gamma rays. The bound on $<sigma_A v >_{e^+e^-}$ is thus weaker than that for $<sigma_A v >_{gammagamma}$ by this same factor. The upper bounds on the annihilation cross sections to charged leptons are compared with an upper bound on the {it total} annihilation cross section defined by neutrinos.
We analyze the intriguing possibility to explain both dark mass components in a galaxy: the dark matter (DM) halo and the supermassive dark compact object lying at the center, by a unified approach in terms of a quasi-relaxed system of massive, neutral fermions in general relativity. The solutions to the mass distribution of such a model that fulfill realistic halo boundary conditions inferred from observations, develop a highly-density core supported by the fermion degeneracy pressure able to mimic massive black holes at the center of galaxies. Remarkably, these dense core-diluted halo configurations can explain the dynamics of the closest stars around Milky Ways center (SgrA*) all the way to the halo rotation curve, without spoiling the baryonic bulge-disk components, for a narrow particle mass range $mc^2 sim 10$-$10^2$~keV.
We revisit the computation of the extragalactic gamma-ray signal from cosmological dark matter annihilations. The prediction of this signal is notoriously model dependent, due to different descriptions of the clumpiness of the dark matter distribution at small scales, responsible for an enhancement with respect to the smoothly distributed case. We show how a direct computation of this flux multiplier in terms of the nonlinear power spectrum offers a conceptually simpler approach and may ease some problems, such as the extrapolation issue. In fact very simple analytical recipes to construct the power spectrum yield results similar to the popular Halo Model expectations, with a straightforward alternative estimate of errors. For this specific application, one also obviates to the need of identifying (often literature-dependent) concepts entering the Halo Model, to compare different simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا