Do you want to publish a course? Click here

Differential rotation and meridional flow in the solar supergranulation layer: Measuring the eddy viscosity

57   0   0.0 ( 0 )
 Added by Guenther Ruediger
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the eddy viscosity in the outermost layers of the solar convection zone by comparing the rotation law computed with the Reynolds stress resulting from f-plane simulations of the angular momentum transport in rotating convection with the observed differential rotation pattern. The simulations lead to a negative vertical and a positive horizontal angular momentum transport. The consequence is a subrotation of the outermost layers, as it is indeed indicated both by helioseismology and the observed rotation rates of sunspots. In order to reproduce the observed gradient of the rotation rate a value of about 1.5 x 10^{13} cm/s for the eddy viscosity is necessary. Comparison with the magnetic eddy diffusivity derived from the sunspot decay yields a surprisingly large magnetic Prandtl number of 150 for the supergranulation layer. The negative gradient of the rotation rate also drives a surface meridional flow towards the poles, in agreement with the results from Doppler measurements. The successful reproduction of the abnormally positive horizontal cross correlation (on the northern hemisphere) observed for bipolar groups then provides an independent test for the resulting eddy viscosity.

rate research

Read More

We studied the solar surface flows (differential rotation and meridional circulation) using a magnetic element feature tracking technique by which the surface velocity is obtained using magnetic field data. We used the line-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory from 01 May 2010 to 16 August 2017 (Carrington rotations 2096 to 2193) and tracked the magnetic element features every hour. Using our method, we estimated the differential rotation velocity profile. We found rotation velocities of $sim$ 30 and -170 m s$^{-1}$ at latitudes of 0$^{circ}$ and 60$^{circ}$ in the Carrington rotation frame, respectively. Our results are consistent with previous results obtained by other methods, such as direct Doppler, time-distance helioseismology, or cross correlation analyses. We also estimated the meridional circulation velocity profile and found that it peaked at $sim$12 m s$^{-1}$ at a latitude of 45$^{circ}$, which is also consistent with previous results. The dependence of the surface flow velocity on the magnetic field strength was also studied. In our analysis, the magnetic elements having stronger and weaker magnetic fields largely represent the characteristics of the active region remnants and solar magnetic networks, respectively. We found that magnetic elements having a strong (weak) magnetic field show faster (slower) rotation speed. On the other hand, magnetic elements having a strong (weak) magnetic field show slower (faster) meridional circulation velocity. These results might be related to the Suns internal dynamics.
We present results of two simulations of the convection zone, obtained by solving the full hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical rotation contours (parallel to the rotation axis) and a strong meridional circulation, which traverses the entire depth. The second simulation has isorotation contours about mid-way between cylinders and cones, and a weak meridional circulation, concentrated in the uppermost part of the shell. We show that the solar differential rotation is directly related to a latitudinal entropy gradient, which pervades into the deep layers of the convection zone. We also offer an explanation of the angular velocity shear found at low latitudes near the top. A non-zero correlation between radial and zonal velocity fluctuations produces a significant Reynolds stress in that region. This constitutes a net transport of angular momentum inwards, which causes a slight modification of the overall structure of the differential rotation near the top. In essence, the {it thermodynamics controls the dynamics through the Taylor-Proudman momentum balance}. The Reynolds stresses only become significant in the surface layers, where they generate a weak meridional circulation and an angular velocity `bump.
We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance relaxation processes strongly modify the shear viscosity, so that an effective viscosity can be negative in the vicinity of charge neutrality. We predict an emergent eddy flow pattern of swirling currents and explore its manifestation in nonlocal resistivity oscillations in a strip of graphene driven by a source current.
We re-investigate UZ Librae spectra obtained at KPNO in 1998 and 2000. From the 1998 data we compose 11 consecutive Doppler images using the Ca I-6439, Fe I-6393 and Fe I-6411 lines. Applying the method of average cross-correlation of contiguous Doppler images we find anti-solar differential rotation with a surface shear of alpha ~ -0.03. The pilot application of the local correlation tracking technique for the same data qualitatively confirms this result and indicates complex flow pattern on the stellar surface. From the cross-correlation of the two available Doppler images in 2000 we also get anti-solar differential rotation but with a much weaker shear of alpha ~ -0.004.
96 - Danah Park , Ali Mani 2021
This study aims to quantify how turbulence in a channel flow mixes momentum in the mean sense. We applied the macroscopic forcing method to direct numerical simulation (DNS) of a turbulent channel flow at Re$_tau$=180 using two different forcing strategies that are designed to separately assess the anisotropy and nonlocality of momentum mixing. In the first strategy, the leading term of the Kramers-Moyal expansion of the eddy viscosity operator is quantified where the macroscopic forcing is employed to reveal all 81 tensorial coefficients that essentially represent the local-limit eddy viscosity. The results indicate: (1) eddy viscosity has significant anisotropy, (2) Reynolds stresses are generated by both mean strain rate and mean rotation rate tensors, and (3) the local-limit eddy viscosity generates asymmetric Reynolds stress tensors. In the second strategy, the eddy viscosity operator is considered as an integration kernel representing the nonlocal influence of mean gradients on the Reynolds stresses. Considering the average of this kernel in the homogeneous directions, the macroscopic forcing is designed to reveal the nonlocal effects in the wall-normal direction for all 9 components of the Reynolds stresses. Our results indicate that while the shear component of the Reynolds stress is reasonably controlled by the local mean gradients, other components of the Reynolds stress are highly nonlocal. These two analyses provide accurate verification data for quantitative testing of anisotropy and nonlocality effects in turbulence closure models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا