No Arabic abstract
The amount and nature of the evolution of the X-ray properties of clusters of galaxies provides information on the formation of structure in the universe and on the properties of the universe itself. The cluster luminosity - temperature relation does not evolve strongly, suggesting that the hot X-ray gas had a more complicated thermodynamic history than simply collapsing into the cluster potential well. Cluster X-ray luminosities do evolve. The dependence of this evolution on redshift and luminosity is characterized using two large high redshift samples. Cluster X-ray temperatures also evolve. This evolution constrains the dark matter and dark energy content of the universe as well as other parameters of cosmological interest.
Considerable progress has been made over the last decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z~1, and the evolution of the physical properties of the intra-cluster medium out to z~0.5. With the advent of Chandra and Newton-XMM, and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intra-cluster gas are significantly affected by non-gravitational processes including star formation and Active Galactic Nucleus (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low density universe with Omega_m=0.3 and sigma_8=0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed and implications of cluster evolution for cosmological models are discussed.
From ROSAT imaging data we have detections and upper limits for a sample of 26 tailed radio sources in clusters of galaxies mostly from the sample of ODea & Owen (1985). All sixteen of the detected sources are unresolved in the ROSAT PSPC images. The sources bright enough to perform X-ray spectral analysis have power-law indices similar to BL~Lacs and Seyfert galaxies. We find that there is a highly significant correlation between the core radio flux density and the X-ray flux but only a weak correlation between the total radio flux density and the X-ray flux. The trend is similar to that found in earlier studies of 3C radio galaxies with {sl Einstein} and more recently with ROSAT. The result adds an additional constraint on models for the unification of BL~Lac objects with FR~I radio sources. Also this result indicates that the observed enhanced X-ray emission near tailed sources is more likely to be due to nuclear emission rather than substructure in the extended cluster gas.
From a Chandra survey of nine interacting galaxy systems the evolution of X-ray emission during the merger process has been investigated. From comparing Lx/Lk and Lfir/Lb it is found that the X-ray luminosity peaks around 300 Myr before nuclear coalescence, even though we know that rapid and increasing star formation is still taking place at this time. It is likely that this drop in X-ray luminosity is a consequence of outflows breaking out of the galactic discs of these systems. At a time around 1 Gyr after coalescence, the merger-remnants in our sample are X-ray dim when compared to typical X-ray luminosities of mature elliptical galaxies. However, we do see evidence that these systems will start to resemble typical elliptical galaxies at a greater dynamical age, given the properties of the 3 Gyr system within our sample, indicating that halo regeneration will take place within low Lx merger-remnants.
We describe the ensemble X-ray properties of high redshift clusters with emphasis on changes with respect to the local population. Cluster X-ray luminosity evolution is detected in five nearly independent surveys. The relevant issue now is characterizing this evolution. Cluster temperature evolution provides constraints on the dark matter and dark energy content of the universe. These constraints are complementary to and in agreement with those of the cosmic microwave background and supernovae, showing that the present universe is dominated by a dark energy. X-ray images show that most z > 0.75 clusters are not relaxed, hinting that the cluster formation epoch is z ~ 1.
We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scaled projected temperature and entropy profiles at z=0 are in good agreement with recent high-quality observations of cool core clusters, suggesting that the simulation grossly follows the processes that structure the intracluster medium (ICM) in these objects. Cool cores are a ubiquitous phenomenon in the simulation at low and high redshift, regardless of a clusters dynamical state. This is at odds with the observations and so suggests there is still a heating mechanism missing from the simulation. Using a simple, observable measure of the concentration of the ICM, which correlates with the apparent mass deposition rate in the cluster core, we find a large dispersion within regular clusters at low redshift, but this diminishes at higher redshift, where strong cooling-flow systems are absent in our simulation. Consequently, our results predict that the normalisation and scatter of the luminosity-temperature relation should decrease with redshift; if such behaviour turns out to be a correct representation of X-ray cluster evolution, it will have significant consequences for the number of clusters found at high redshift in X-ray flux-limited surveys.