No Arabic abstract
We describe the algorithm that selects the main sample of galaxies for spectroscopy in the Sloan Digital Sky Survey from the photometric data obtained by the imaging survey. Galaxy photometric properties are measured using the Petrosian magnitude system, which measures flux in apertures determined by the shape of the surface brightness profile. The metric aperture used is essentially independent of cosmological surface brightness dimming, foreground extinction, sky brightness, and the galaxy central surface brightness. The main galaxy sample consists of galaxies with r-band Petrosian magnitude r < 17.77 and r-band Petrosian half-light surface brightness < 24.5 magnitudes per square arcsec. These cuts select about 90 galaxy targets per square degree, with a median redshift of 0.104. We carry out a number of tests to show that (a) our star-galaxy separation criterion is effective at eliminating nearly all stellar contamination while removing almost no genuine galaxies, (b) the fraction of galaxies eliminated by our surface brightness cut is very small (0.1%), (c) the completeness of the sample is high, exceeding 99%, and (d) the reproducibility of target selection based on repeated imaging scans is consistent with the expected random photometric errors. (abridged)
We describe the target selection and resulting properties of a spectroscopic sample of luminous, red galaxies (LRG) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous, intrinsically red galaxies that extends fainter and further than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively-evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous, red galaxies are included to a redshift of 0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M_g=-21.4), red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume-limited out to z=0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1h^-3 Gpc^3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z=0.5.
We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial velocities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.
The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1<z<4.5 and is flux-limited to i_PSF<21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
Bivariate luminosity functions (LFs) are computed for galaxies in the New York Value-Added Galaxy Catalogue, based on the Sloan Digital Sky Survey Data Release 4. The galaxy properties investigated are the morphological type, inverse concentration index, Sersic index, absolute effective surface brightness, reference frame colours, absolute radius, eClass spectral type, stellar mass and galaxy environment. The morphological sample is flux-limited to galaxies with r < 15.9 and consists of 37,047 classifications to an RMS accuracy of +/- half a class in the sequence E, S0, Sa, Sb, Sc, Sd, Im. These were assigned by an artificial neural network, based on a training set of 645 eyeball classifications. The other samples use r < 17.77 with a median redshift of z ~ 0.08, and a limiting redshift of z < 0.15 to minimize the effects of evolution. Other cuts, for example in axis ratio, are made to minimize biases. A wealth of detail is seen, with clear variations between the LFs according to absolute magnitude and the second parameter. They are consistent with an early type, bright, concentrated, red population and a late type, faint, less concentrated, blue, star forming population. This bimodality suggests two major underlying physical processes, which in agreement with previous authors we hypothesize to be merger and accretion, associated with the properties of bulges and discs respectively. The bivariate luminosity-surface brightness distribution is fit with the Choloniewski function (a Schechter function in absolute magnitude and Gaussian in surface brightness). The fit is found to be poor, as might be expected if there are two underlying processes.