Do you want to publish a course? Click here

Faint Stars in the Ursa Minor Dwarf Spheroidal Galaxy: Implications for the Low-Mass Stellar Initial Mass Function at High Redshift

103   0   0.0 ( 0 )
 Added by Mark L. Houdashelt
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

115 - Andrew B. Pace 2020
We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/DEIMOS spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance ($ln{B}sim33$). The metal-rich ($[{rm Fe/H}]=-2.05pm0.03$) population is kinematically colder (radial velocity dispersion of $sigma_v=4.9pm0.8 , {rm km , s^{-1}}$) and more centrally concentrated than the metal-poor ($[{rm Fe/H}]=-2.29pm0.05$) and kinematically hotter population ($sigma_v =11.5pm0.9, {rm km , s^{-1}}$). Furthermore, we apply the same analysis to an independent MMT/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened ($epsilon=0.75pm0.03$) and the metal-poor population is closer to spherical ($epsilon=0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are unable to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order $sim 2 , {rm km , s^{-1}}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $log_{10}{(J(0.5^{circ})/{rm GeV^{2} , cm^{-5}})}approx19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of Ursa Minor than previously discussed.
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each clusters CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $Gamma_{rm MW} sim+1.15pm0.1$ and $Gamma_{rm LMC} sim+1.3pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
We investigate the evolution of the galaxy stellar mass function at high-redshift ($zge 5$) using a pair of large cosmological hydrodynamical simulations: {em MassiveBlack} and {em MassiveBlack-II}. By combining these simulations we can study the properties of galaxies with stellar masses greater than $10^{8},{rm M_{odot}},h^{-1}$ and (co-moving) number densities of $log_{10}(phi, [{rm Mpc^{-3},dex^{-1}},h^{3}])>-8$. Observational determinations of the galaxy stellar mass function at very-high redshift typically assume a relation between the observed UV luminosity and stellar mass-to-light ratio which is applied to high-redshift samples in order to estimate stellar masses. This relation can also be measured from the simulations. We do this, finding two significant differences with the usual observational assumption: it evolves strongly with redshift and has a different shape. Using this relation to make a consistent comparison between galaxy stellar mass functions we find that at $z=6$ and above the simulation predictions are in good agreement with observed data over the whole mass range. Without using the correct UV luminosity and stellar mass-to-light ratio, the discrepancy would be up to two orders of magnitude for large galaxies $>10^{10},{rm M_{odot}},h^{-1}$. At $z=5$, however the stellar mass function for low mass $<10^{9},{rm M_{odot}},h^{-1}$ galaxies is overpredicted by factors of a few, consistent with the behaviour of the UV luminosity function, and perhaps a sign that feedback in the simulation is not efficient enough for these galaxies.
307 - Andrew B. Pace 2012
We present a method for identifying localized secondary populations in stellar velocity data using Bayesian statistical techniques. We apply this method to the dwarf spheroidal galaxy Ursa Minor and find two secondary objects in this satellite of the Milky Way. One object is kinematically cold with a velocity dispersion of $4.25 pm 0.75 kms$ and centered at $(9.1arcmin pm 1.5, 7.2arcmin pm 1.2)$ in relative RA and DEC with respect to the center of Ursa Minor. The second object has a large velocity offset of $-12.8^{+1.75}_{-1.5} kms$ compared to Ursa Minor and centered at $(-14.0arcmin^{+2.4}_{-5.8}, -2.5arcmin^{+0.4}_{-1.0})$. The kinematically cold object has been found before using a smaller data set but the prediction that this cold object has a velocity dispersion larger than $2.0 kms$ at 95% C.L. differs from previous work. We use two and three component models along with the information criteria and Bayesian evidence model selection methods to argue that Ursa Minor has one or two localized secondary populations. The significant probability for a large velocity dispersion in each secondary object raises the intriguing possibility that each has its own dark matter halo, that is, it is a satellite of a satellite of the Milky Way.
We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep HST/ACS imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M_V = -6.2, -5.5), metal-poor (<[Fe/H]>= -2.4, -2.5) systems that have old stellar populations (> 11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52 - 0.77 Msun, the IMF is best fit by a power-law slope of alpha = 1.2^{+0.4}_{-0.5} for Hercules and alpha = 1.3 +/- 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter IMF (alpha=2.35) at the 5.8-sigma level, and a Kroupa IMF (alpha=2.3 above 0.5 Msun) at 5.4-sigma level. We simultaneously fit for the binary fraction, finding f_binary = 0.47^{+0.16}_{-0.14} for Hercules, and 0.47^{+0.37}_{-0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5 - 0.8 Msun, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا