No Arabic abstract
We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/DEIMOS spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance ($ln{B}sim33$). The metal-rich ($[{rm Fe/H}]=-2.05pm0.03$) population is kinematically colder (radial velocity dispersion of $sigma_v=4.9pm0.8 , {rm km , s^{-1}}$) and more centrally concentrated than the metal-poor ($[{rm Fe/H}]=-2.29pm0.05$) and kinematically hotter population ($sigma_v =11.5pm0.9, {rm km , s^{-1}}$). Furthermore, we apply the same analysis to an independent MMT/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened ($epsilon=0.75pm0.03$) and the metal-poor population is closer to spherical ($epsilon=0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are unable to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order $sim 2 , {rm km , s^{-1}}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $log_{10}{(J(0.5^{circ})/{rm GeV^{2} , cm^{-5}})}approx19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of Ursa Minor than previously discussed.
We present a method for identifying localized secondary populations in stellar velocity data using Bayesian statistical techniques. We apply this method to the dwarf spheroidal galaxy Ursa Minor and find two secondary objects in this satellite of the Milky Way. One object is kinematically cold with a velocity dispersion of $4.25 pm 0.75 kms$ and centered at $(9.1arcmin pm 1.5, 7.2arcmin pm 1.2)$ in relative RA and DEC with respect to the center of Ursa Minor. The second object has a large velocity offset of $-12.8^{+1.75}_{-1.5} kms$ compared to Ursa Minor and centered at $(-14.0arcmin^{+2.4}_{-5.8}, -2.5arcmin^{+0.4}_{-1.0})$. The kinematically cold object has been found before using a smaller data set but the prediction that this cold object has a velocity dispersion larger than $2.0 kms$ at 95% C.L. differs from previous work. We use two and three component models along with the information criteria and Bayesian evidence model selection methods to argue that Ursa Minor has one or two localized secondary populations. The significant probability for a large velocity dispersion in each secondary object raises the intriguing possibility that each has its own dark matter halo, that is, it is a satellite of a satellite of the Milky Way.
(abridged) We present B,V,I CCD photometry of about 40000 stars in four regions of the Fornax dSph. Using the resultant CMDs, many already known age-tracers are investigated, and new CMD features are also detected: we show that blue HB stars may be present in the outer regions, and measure the luminosity of the AGB bump. We measure a corrected distance modulus (m-M)o = 20.70+/-0.12, based on the RGB tip luminosity, which is in good agreement with that obtained from the mean magnitude of old HB stars [(m-M)o=20.76+/-0.04] and with previous results. The (B-I) distribution of the RG stars can be approximately described as the superposition of two populations. The dominant component, comprising ~70% of the red giant stars, consists of relatively metal-enriched intermediate-age stars, whose mean metallicity is [Fe/H]=-1.39+/-0.15 (the age-corrected metallicity would be [Fe/H] ~ -1.0+/-0.15). The dominant intermediate-age component has an intrinsic color dispersion sigma(B-I)=0.06+/-0.01mag, corresponding to a relatively low abundance dispersion, sigma[Fe/H]=0.12+/-0.02dex. In addition, there is a small population of giants on the blue side of the RGB, whose spatial distribution is consistent with that of old horizontal branch stars, and completely different from that of the younger population. This unambiguously qualifies them as old and metal-poor. The exceptional color width of the Fornax RGB is therefore due to the presence of two main populations, yielding a large abundance range (-2.0<[Fe/H]<-0.7). This evidence suggests a scenario in which this galaxy started forming a stellar halo and its surrounding clusters together about 10-13 Gyr ago, then a major SF episode occurred after several Gyr.
Dwarf spheroidal galaxies (dSphs) are promising targets of indirect detection experiments searching for dark matter (DM) at present universe. Toward robust prediction for the amount of signal flux originating in DM annihilation inside dSphs, a precise determination of DM distributions as well as $J$-factors of the dSphs is particularly important. In this work, we estimate those of Draco, Sculptor, and Ursa Minor dSphs by an improved statistical method in which both foreground stars and dSph member stars are simultaneously taken into account. We define the likelihood function of the method as the so-called conditional one to remove sampling bias of observed stellar data. This improved method enables us to estimate DM distributions and $J$-factors of the dSphs directly from observed stellar data contaminated by foreground stars without imposing stringent membership criteria on the measured quantities.
We present results of our search for X-ray line emission associated with the radiative decay of the sterile neutrino, a well-motivated dark matter candidate, in Suzaku Observatory spectra of the Ursa Minor dwarf spheroidal galaxy. These data represent the first deep observation of one of these extreme mass-to-light systems and the first dedicated dark matter search using an X-ray telescope. No such emission line is positively detected, and we place new constraints on the combination of the sterile neutrino mass and the active-sterile neutrino oscillation mixing angle. Line flux upper limits are derived using a maximum-likelihood-based approach that, along with the lack of intrinsic X-ray emission, enables us to minimize systematics and account for those that remain. The limits we derive match or approach the best previous results over the entire 1--20 keV mass range from a single Suzaku observation. These are used to place constraints on the existence of sterile neutrinos with given parameters in the general case and in the case where they are assumed to constitute all of the dark matter. The range allowed implies that sterile neutrinos remain a viable candidate to make up some -- or all -- of the dark matter and also explain pulsar kicks and various other astrophysical phenomena.
Using archival imaging from the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope, we investigate the stellar populations of the Local Group dwarf spheroidal Andromeda V - a companion satellite galaxy of M31. The color-magnitude diagram (CMD) extends from above the first ascent red giant branch (RGB) tip to approximately one magnitude below the horizontal branch (HB). The steep well-defined RGB is indicative of a metal-poor system while the HB is populated predominantly redward of the RR Lyrae instability strip. Utilizing Galactic globular cluster fiducial sequences as a reference, we calculate a mean metallicity of [Fe/H] = -2.20 +/- 0.15 and a distance of (m-M)0 = 24.57 +/- 0.04 after adopting a reddening of E(B-V) = 0.16. This metal abundance places And V squarely in the absolute magnitude - metallicity diagram for dwarf spheroidal galaxies. In addition, if we attribute the entire error-corrected color spread of the RGB stars to an abundance spread, we estimate a range of ~0.5 dex in the metallicities of And V stars. Our analysis of the variable star population of And V reveals the presence of 28 potential variables. Of these, at least 10 are almost certainly RR Lyrae stars based on their time sequence photometry.