Do you want to publish a course? Click here

A fast X-ray timing capability on XEUS

54   0   0.0 ( 0 )
 Added by Didier Barret
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. These studies require extremely good photon statistics. In view of the huge collecting area of its mirrors, XEUS could make a unique contribution to this field. For this reason, we propose to include a fast X-ray timing capability in the focal plane of the XEUS mirrors. We briefly outline the scientific motivation for such a capability. We compute some sensitivity estimates, which indicate that XEUS could provide better than an order of magnitude sensitivity improvement over the Rossi X-ray Timing Explorer. Finally, we present a possible detector implementation, which could be an array of small size silicon drift detectors operated out of focus.

rate research

Read More

81 - E. Costa 2002
X-ray Polarimetry is almost as old as X-ray Astronomy. Since the first discovery of X-ray sources theoretical analysis suggested that a high degree of linear polarization could be expected due either to the, extremely non thermal, emission mechanism or to the transfer of radiation in highly asymmetric systems. The actual implementation of this subtopic was, conversely, relatively deceiving. This is mainly due to the limitation of the conventional techniques based on the Bragg diffraction at 45deg, or on Thomson scattering around 90deg. Acually no X-ray Polarimeter has been launched since 25 years. Nevertheless the expectations from such measurement on several astrophysical targets including High and Low Mass X-Ray Binaries, isolated neutron Stars, Galactic and Extragalactic Black Holes is extremely attractive. We developed a new technique to measure the linear polarization of X-ray sources. It is based on the visualization of photoelectron tracks in a, finely subdivided, gas filled detector (micropattern). The initial direction of the photoelectron is derived and from the angular distribution of the tracks the amount and angle of polarization is computed. This technique can find an optimal exploitation in the focus of XEUS-1. Even in a very conservative configuration (basically the already existing prototype) the photoelectric polarimeter could perform polarimetry at % level on many AGNs. Further significant improvements can be expected from a technological development on the detector and with the use of XEUS-2 telescope.
We describe measurements of the X-ray reflectance in the range 2 to 10 keV of samples representative of coated silicon wafers that are proposed for the fabrication of the XEUS (X-ray Evolving Universe Spectrometer) mission. We compare the reflectance of silicon samples coated with bare Pt, with that for samples with an additional 10nm thick carbon over-coating. We demonstrate a significant improvement in reflectance in the energy range ~1 to 4 keV, and at a grazing incidence angle of 10 mrad (0.57 degrees). We consider the resulting effective area that could be attained with an optimized design of the XEUS telescope. Typically an improvement of 10 to 60 % in effective area, depending on photon energy, can be achieved using the carbon overcoat.
XEUS is a large area telescope aiming to rise X-ray Astronomy to the level of Optical Astronomy in terms of collecting areas. It will be based on two satellites, locked on a formation flight, one with the optics, one with the focal plane. The present design of the focal plane foresees, as an auxiliary instrument, the inclusion of a Polarimeter based on a Micropattern Chamber. We show how such a device is capable to solve open problems on many classes of High Energy Astrophysics objects and to use X-ray sources as a laboratory for a substantial progress on Fundamental Physics.
In X-ray binaries, rapid variability in X-ray flux of greater than an order of magnitude on time-scales of a day or less appears to be a signature of wind accretion from a supergiant companion. When the variability takes the form of rare, brief, bright outbursts with only faint emission between them, the systems are called Supergiant Fast X-ray Transients (SFXTs). We present data from twice-weekly scans of the Galactic bulge by the Rossi X-ray Timing Explorer (RXTE) that allow us to compare the behaviour of known SFXTs and possible SFXT candidates with the persistently bright supergiant X-ray binary 4U 1700-377. We independently confirm the orbital periods reported by other groups for SFXTs SAX J1818.6-1703 and IGR J17544-2619. The new data do not independently reproduce the orbital period reported for XTE J1739-302, but slightly improve the significance of the original result when the data are combined. The bulge source XTE J1743-363 shows a combination of fast variability and a long-term decline in activity, the latter behaviour not being characteristic of supergiant X-ray binaries. A far-red spectrum of the companion suggests that it is a symbiotic neutron star binary rather than a high-mass binary, and the reddest known of this class: the spectral type is approximately M8 III.
Microchannel plate photodetectors provide both picosecond time resolution and sub-millimeter position resolution, making them attractive photosensors for particle identification detectors of a future U.S. Electron Ion Collider. We have tested the rate capability and magnetic field tolerance of 6$times$6 cm$^{2}$ microchannel plate photodetectors fabricated at Argonne National Laboratory. The microchannel plate photodetector is designed as a low-cost all-glass vacuum package with a chevron pair stack of next-generation microchannel plates functionalized by atomic layer deposition. The rate capability test was performed using Fermilabs 120 GeV primary proton beam, and the magnetic field tolerance test was performed using a solenoid magnetic with tunable magnetic field strength up to 4 Tesla. The measured gain of the microchannel plate photodetector is stable up to 75 kHz/cm$^{2}$, and varies depending on the applied magnetic field strength and the rotation angle relative to the magnetic field direction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا