Do you want to publish a course? Click here

Rate capability and magnetic field tolerance measurements of fast timing microchannel plate photodetectors

138   0   0.0 ( 0 )
 Added by Mohammad Hattawy
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microchannel plate photodetectors provide both picosecond time resolution and sub-millimeter position resolution, making them attractive photosensors for particle identification detectors of a future U.S. Electron Ion Collider. We have tested the rate capability and magnetic field tolerance of 6$times$6 cm$^{2}$ microchannel plate photodetectors fabricated at Argonne National Laboratory. The microchannel plate photodetector is designed as a low-cost all-glass vacuum package with a chevron pair stack of next-generation microchannel plates functionalized by atomic layer deposition. The rate capability test was performed using Fermilabs 120 GeV primary proton beam, and the magnetic field tolerance test was performed using a solenoid magnetic with tunable magnetic field strength up to 4 Tesla. The measured gain of the microchannel plate photodetector is stable up to 75 kHz/cm$^{2}$, and varies depending on the applied magnetic field strength and the rotation angle relative to the magnetic field direction.

rate research

Read More

94 - B.Bilki , J.Butler , E.May 2009
This paper reports on detailed measurements of the performance of Resistive Plate Chambers in a proton beam with variable intensity. Short term effects, such as dead time, are studied using consecutive events. On larger time scales, for various beam intensities the chamber.s efficiency is studied as a function of time within a spill of particles. The correlation between the efficiency of chambers placed in the same beam provides an indication of the lateral size of the observed effects. The measurements are compared to the predictions of a simple model based on the assumption that the resistive plates behave as pure resistors.
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate a Micromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkov-radiator front window, which produces sufficient UV photons to convert the ~100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ~50 primary photoelectrons, using a bulk Micromegas readout.
A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E$times$B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an $alpha$-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520$mu$m FWHM, which was improved to 413$mu$m FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatial resolution of 413$mu$m FWHM corresponds to an intrinsic resolution of 334$mu$m FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.
This paper has the purpose to study the rate capability of the Resistive Plate Chamber, RPC, starting from the basic physics of this detector. The effect of different working parameters determining the rate capability is analysed in detail, in order to optimize a new family of RPCs for applications to heavy irradiation environments and in particular to the LHC phase 2. A special emphasis is given to the improvement achievable by minimizing the avalanche charge delivered in the gas. The paper shows experimental results of Cosmic Ray tests, performed to study the avalanche features for different gas gap sizes, with particular attention to the overall delivered charge. For this purpose, the paper studies, in parallel to the prompt electronic signal, also the ionic signal which gives the main contribution to the delivered charge. Whenever possible the test results are interpreted on the base of the RPC detector physics and are intended to extend and reinforce our physical understanding of this detector.
Micro-channel plate (MCP)-based photodetectors are capable of picosecond level time resolution and sub-mm level position resolution, which makes them a perfect candidate for the next generation large area photodetectors. The large-area picosecond photodetector (LAPPD) collaboration is developing new techniques for making large-area photodetectors based on new MCP fabrication and functionalization methods. A small single tube processing system (SmSTPS) was constructed at Argonne National Laboratory (ANL) for developing scalable, cost-effective, glass-body, 6 cm x 6 cm, picosecond photodetectors based on MCPs functionalized by Atomic Layer Deposition (ALD). Recently, a number of fully processed and hermitically sealed prototypes made of MCPs with 20 micron pores have been fabricated. This is a significant milestone for the LAPPD project. These prototypes were characterized with a pulsed laser test facility. Without optimization, the prototypes have shown excellent results: The time resolution is ~57 ps for single photoelectron mode and ~15 ps for multi-photoelectron mode; the best position resolution is < 0.8 mm for large pulses. In this paper, the tube processing system, the detector assembly, experimental setup, data analysis and the key performance will be presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا