Do you want to publish a course? Click here

Stellar-Mass Black Holes in the Solar Neighborhood

120   0   0.0 ( 0 )
 Added by James R. Chisholm
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We search for nearby, isolated, accreting, ``stellar-mass (3 to $100M_odot$) black holes. Models suggest a synchrotron spectrum in visible wavelengths and some emission in X-ray wavelengths. Of 3.7 million objects in the Sloan Digital Sky Survey Early Data Release, about 150,000 objects have colors and properties consistent with such a spectrum, and 87 of these objects are X-ray sources from the ROSAT All Sky Survey. Thirty-two of these have been confirmed not to be black-holes using optical spectra. We give the positions and colors of these 55 black-hole candidates, and quantitatively rank them on their likelihood to be black holes. We discuss uncertainties the expected number of sources, and the contribution of blackholes to local dark matter.



rate research

Read More

We study spectroscopically determined iron abundances of 642 solar-type stars to search for the signature of accreted iron-rich material. We find that the metallicity [Fe/H] of a subset of 466 main sequence stars, when plotted as a function of stellar mass, mimics the pattern seen in lithium abundances in open clusters. Using Monte Carlo models we find that, on average, these stars have accreted about 0.4 Earth masses of iron while on the main sequence. A much smaller sample of 19 stars in the Hertzsprung gap, which are slightly evolved and whose convection zones are significantly more massive, have lower average [Fe/H], and their metallicity shows no clear variation with stellar mass. These findings suggest that terrestrial-type material is common around solar type stars.
163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object mergers could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matching techniques, such as Wiener filtering, is likely to be computationally an impossible exercise. In this article we propose using a mixture of optimal and non-optimal methods to create a search hierarchy to ease the computational burden. Furthermore, by employing the method of principal components (also known as singular value decomposition) we explicitly demonstrate that the effective dimensionality of the search parameter space of smirches is likely to be just three or four, much smaller than what has hitherto been thought to be about nine or ten. This result, based on a limited study of the parameter space, should be confirmed by a more exhaustive study over the parameter space as well as Monte-Carlo simulations to test the predictions made in this paper.
We compile spectroscopic abundance data from 84 literature sources for 50 elements across 3058 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. We evaluate the variability of the spread in abundance measurements reported for the same star by different surveys. We also explore the likely association of the star within the Galactic disk, the corresponding observation and abundance determination methods for all catalogs in Hypatia, the influence of specific catalogs on the overall abundance trends, and the effect of normalizing all abundances to the same solar scale. The resulting large number of stellar abundance determinations in the Hypatia Catalog are analyzed only for thin-disk stars with observations that are consistent between literature sources. As a result of our large dataset, we find that the stars in the solar neighborhood may be reveal an asymmetric abundance distribution, such that a [Fe/H]-rich group near to the mid-plane is deficient in Mg, Si, S, Ca, Sc II, Cr II, and Ni as compared to stars further from the plane. The Hypatia Catalog has a wide number of applications, including exoplanet hosts, thick and thin disk stars, or stars with different kinematic properties.
145 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا