No Arabic abstract
The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matching techniques, such as Wiener filtering, is likely to be computationally an impossible exercise. In this article we propose using a mixture of optimal and non-optimal methods to create a search hierarchy to ease the computational burden. Furthermore, by employing the method of principal components (also known as singular value decomposition) we explicitly demonstrate that the effective dimensionality of the search parameter space of smirches is likely to be just three or four, much smaller than what has hitherto been thought to be about nine or ten. This result, based on a limited study of the parameter space, should be confirmed by a more exhaustive study over the parameter space as well as Monte-Carlo simulations to test the predictions made in this paper.
We study parameter estimation of supermassive black holes in the range $10^5-10^8Ms$ by LISA using the inspiral full post-Newtonian gravitational waveforms, and we compare the results with those arising from the commonly used restricted post-Newtonian approximation. The analysis shows that for observations of the last year before merger, the inclusion of the higher harmonics clearly improves the parameter estimation. We pay special attention to the source location errors and we study the improvement on the percentage of sources for which we could potentially identify electromagnetic counterparts. We also show how the additional harmonics can help to mitigate the impact of losing laser links during the mission.
Extreme gravitational lensing refers to the bending of photon trajectories that pass very close to supermassive black holes and that cannot be described in the conventional weak deflection limit. A complete analytical description of the whole expected phenomenology has been achieved in the recent years using the strong deflection limit. These progresses and possible directions for new investigations are reviewed in this paper at a basic level. We also discuss the requirements for future facilities aimed at detecting higher order gravitational lensing images generated by the supermassive black hole in the Galactic center.
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a promising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.
We consider the spacetimes corresponding to static Global Monopoles with interior boundaries corresponding to a Black Hole Horizon and analyze the behavior of the appropriate ADM mass as a function of the horizon radius r_H. We find that for small enough r_H, this mass is negative as in the case of the regular global monopoles, but that for large enough r_H the mass becomes positive encountering an intermediate value for which we have a Black Hole with zero ADM mass.
Supermassive black holes have generally been recognized as the most destructive force in nature. But in recent years, they have undergone a dramatic shift in paradigm. These objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation and nucleating proto-galactic condensations. Possibly half of all the radiation produced after the Big Bang may be attributed to them, whose number is now known to exceed 300 million. The most accessible among them is situated at the Center of Our Galaxy. In the following pages, we will examine the evidence that has brought us to this point, and we will understand why many expect to actually image the event horizon of the Galaxys central black hole within this decade.