Do you want to publish a course? Click here

A Young Very Low-Mass Object surrounded by warm dust

74   0   0.0 ( 0 )
 Added by Leonardo Testi
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a complete low-resolution (R~100) near-infrared spectrum of the substellar object GY11, member of the rho-Ophiuchi young association. The object is remarkable because of its low estimated mass and age and because it is associated with a mid-infrared source, an indication of a surrounding dusty disk. Based on the comparison of our spectrum with similar spectra of field M-dwarfs and atmospheric models, we obtain revised estimates of the spectral type, effective temperature and luminosity of the central object. These parameters are used to place the object on a Hertzprung-Russell diagram and to compare with the prediction of pre-main sequence evolutionary models. Our analysis suggests that the central object has a very low mass, probably below the deuterium burning limit and in the range 8-12MJupiter, and a young age, less than 1Myr. The infrared excess is shown to be consistent with the emission of a flared, irradiated disk similar to those found in more massive brown dwarf and TTauri systems. This result suggests that substellar objects, even the so-called isolated planetary mass objects, found in young stellar associations are produced in a similar fashion as stars, by core contraction and gravitational collapse.



rate research

Read More

Very low-mass Class I protostars have been investigated very little thus far. Variability of these young stellar objects (YSOs) and whether or not they are capable of strong episodic accretion is also left relatively unstudied. We investigate accretion variability in IRS54, a Class I very low-mass protostar with a mass of M$_{star}$ ~ 0.1 - 0.2 M$_{odot}$. We obtained spectroscopic and photometric data with VLT/ISAAC and VLT/SINFONI in the near-infrared ($J$, $H$, and $K$ bands) across four epochs (2005, 2010, 2013, and 2014). We used accretion-tracing lines (Pa$beta$ and Br$gamma$) and outflow-tracing lines (H$_2$ and [FeII] to examine physical properties and kinematics of the object. A large increase in luminosity was found between the 2005 and 2013 epochs of more than 1 magnitude in the $K$ band, followed in 2014 by a steep decrease. Consistently, the mass accretion rate ($dot{M}_{acc}$) rose by an order of magnitude from ~ 10$^{-8}$ M$_{odot}$ yr$^{-1}$ to ~ $10^{-7}$ M$_{odot}$ yr$^{-1}$ between the two early epochs. The visual extinction ($A_V$) has also increased from ~ 15 mag in 2005 to ~ 24 mag in 2013. This rise in $A_V$ in tandem with the increase in $dot{M}_{acc}$ is explained by the lifting up of a large amount of dust from the disc of IRS54, following the augmented accretion and ejection activity in the YSO, which intersects our line of sight due to the almost edge-on geometry of the disc. Because of the strength and timescales involved in this dramatic increase, this event is believed to have been an accretion burst possibly similar to bursts of EXor-type objects. IRS54 is the lowest mass Class I source observed to have an accretion burst of this type, and therefore potentially one of the lowest mass EXor-type objects known so far.
Context. Transition disks (TDs) are circumstellar disks with inner regions highly depleted in dust. TDs are observed in a small fraction of disk-bearing objects at ages of 1-10 Myr. They are important laboratories to study evolutionary effects in disks, from photoevaporation to planet-disk interactions. Aims. We report the discovery of a large inner dust-empty region in the disk around the very low mass star CIDA 1 (M$_{star} sim 0.1-0.2$ M$_{odot}$). Methods. We used ALMA continuum observations at 887$mu$m, which provide a spatial resolution of $0.21times0.12$ ($sim$15$times$8 au in radius at 140 pc). Results. The data show a dusty ring with a clear cavity of radius $sim$20 au, the typical characteristic of a TD. The emission in the ring is well described by a narrow Gaussian profile. The dust mass in the disk is $sim$17 M$_{oplus}$. CIDA 1 is one of the lowest mass stars with a clearly detected millimeter cavity. When compared to objects of similar stellar mass, it has a relatively massive dusty disk (less than $sim5$% of Taurus Class II disks in Taurus have a ratio of $M_{rm{disk}}/M_{star}$ larger than CIDA 1) and a very high mass accretion rate (CIDA 1 is a disk with one of the lowest values of $M_{rm{disk}}/dot M$ ever observed). In light of these unusual parameters, we discuss a number of possible mechanisms that can be responsible for the formation of the dust cavity (e.g., photoevaporation, dead zones, embedded planets, close binary). We find that an embedded planet of a Saturn mass or a close binary are the most likely possibilities.
229 - Alexander Scholz 2008
IRAS04325+2402C is a low luminosity object located near a protostar in Taurus. We present new spatially-resolved mm observations, near-infrared spectroscopy, and Spitzer photometry that improve the constraints on the nature of this source. The object is clearly detected in our 1.3 mm interferometry map, allowing us to estimate the mass in a localized disk+envelope around it to be in the range of 0.001 to 0.01Ms. Thus IRAS04325C is unlikely to accrete significantly more mass. The near-infrared spectrum cannot be explained with an extincted photosphere alone, but is consistent with a 0.03-0.1Ms central source plus moderate veiling, seen in scattered light, confirming the edge-on nature of the disk. Based on K-band flux and spectral slope we conclude that a central object mass >~0.1Ms is unlikely. Our comparison of the full spectral energy distribution, including new Spitzer photometry, with radiative transfer models confirms the high inclination of the disk (>~80deg), the very low mass of the central source, and the small amount of circumstellar material. IRAS04325C is one of the lowest mass objects with a resolved edge-on disk known to date, possibly a young brown dwarf, and a likely wide companion to a more massive star. With these combined properties, it represents a unique case to study the formation and early evolution of very low mass objects.
We look for wide, faint companions around members of the 5 Myr Lambda Orionis open cluster. We used optical, near-infrared, and Spitzer/IRAC photometry. We report the discovery of a very wide very low mass visual binary, LOri167, formed by a brown dwarf and a planetary-mass candidate located at 5 arcsec, which seems to belong to the cluster. We derive Teff of 2125 and 1750 K. If they are members, comparisons with theoretical models indicate masses of 17 (20-15) Mjup and 8 (13-7) Mjup, with a projected separation of 2000 AU. Such a binary system would be difficult to explain in most models, particularly those where substellar objects form in the disks surrounding higher mass stars.
535 - Laurent Loinard 2008
Multi-epoch radio-interferometric observations of young stellar objects can be used to measure their displacement over the celestial sphere with a level of precision that currently cannot be attained at any other wavelength. In particular, the accuracy achieved using carefully calibrated, phase-referenced observations with the Very Long Baseline Array is better than 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and the proper motion of any radio-emitting young star within several hundred parsecs of the Sun with an accuracy better than a few percents. Taking advantage of this situation, we have initiated a large project aimed mainly at measuring the distance to the nearest regions of star-formation (Taurus, Ophiuchus, Perseus, etc.). Here, we will present the results for several stars in Taurus and Ophiuchus, and show that the accuracy obtained is already more than one order of magnitude better than that of previous estimates. The proper motion obtained from the data can also provide important information, particularly in multiple stellar systems. To illustrate this point, we will present the case of the famous system T Tauri, where the VLBA data provide crucial information for the characterization of the orbital path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا