No Arabic abstract
The energies and widths of gamma-ray lines emitted by ambient nuclei excited by flare-accelerated protons and alpha particles provide information on the ions directionality and spectra, and on the characteristics of the interaction region. We have measured the energies and widths of strong lines from de-excitations of 12C, 16O, and 20Ne in solar flares as a function of heliocentric angle. The line energies from all three nuclei exhibit ~1% redshifts for flares at small heliocentric angles, but are not shifted near the limb. The lines have widths of ~3% FWHM. We compare the 12C line measurements for flares at five different heliocentric angles with calculations for different interacting-particle distributions. A downward isotropic distribution (or one with a small upward component) provides a good fit to the line measurements. An angular distribution derived for particles that undergo significant pitch angle scattering by MHD turbulence in coronal magnetic loops provides comparably good fits.
$gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $gamma$-ray lines of $^{16}$O produced in proton and $alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for $alpha$-particles have been delivered by the IPN-Orsay tandem accelerator. The $gamma$ rays have been detected with four HP-Ge detectors in the angular range 30$^{circ}$ to 135$^{circ}$. We extracted 36 cross section excitation functions for proton reactions and 14 for $alpha$-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible usually a very good agreement was found. It is shown that these data are very interesting for constraining nuclear reaction models. In particular the agreement of cross section calculations in the nuclear reaction code TALYS with the measured data could be improved by adjusting the coupling schemes of collective levels in the target nuclei $^{14}$N, $^{20,22}$Ne and $^{28}$Si. The importance of these results for the modeling of nuclear $gamma$-ray line emission in astrophysical sites is discussed.
Impulsive solar energetic particle events are widely believed to be due to the prompt escape into the interplanetary medium of flare-accelerated particles produced by solar eruptive events. According to the standard model for such events, however, particles accelerated by the flare reconnection should remain trapped in the flux rope comprising the coronal mass ejection. The particles should reach the Earth only much later, along with the bulk ejecta. To resolve this paradox, we have extended our previous axisymmetric model for the escape of flare-accelerated particles to fully three-dimensional (3D) geometries. We report the results of magnetohydrodynamic simulations of a coronal system that consists of a bipolar active region embedded in a background global dipole field structured by solar wind. Our simulations show that multiple magnetic reconnection episodes occur prior to and during the CME eruption and its interplanetary propagation. In addition to the episodes that build up the flux rope, reconnection between the open field and the CME couples the closed corona to the open interplanetary field. Flare-accelerated particles initially trapped in the CME thereby gain access to the open interplanetary field along a trail blazed by magnetic reconnection. A key difference between these 3D results and our previous calculations is that the interchange reconnection allows accelerated particles to escape from deep within the CME flux-rope. We estimate the spatial extent of the particle-escape channels. The relative timings between flare acceleration and release of the energetic particles through CME/open-field coupling are also determined. All our results compare favourably with observations.
Classical novae are among the most frequent transient events in the Milky Way, and key agents of ongoing nucleosynthesis. Despite their large numbers, they have never been observed in soft $gamma$-ray emission. Measurements of their $gamma$-ray signatures would provide both, insights on explosion mechanism as well as nucleosynthesis products. Our goal is to constrain the ejecta masses of $mathrm{^7Be}$ and $mathrm{^{22}Na}$ from classical novae through their $gamma$-ray line emissions at 478 and 1275 keV. We extract posterior distributions on the line fluxes from archival data of the INTEGRAL/SPI spectrometer telescope. We then use a Bayesian hierarchical model to link individual objects and diffuse emission and infer ejecta masses from the whole population of classical novae in the Galaxy. Individual novae are too dim to be detectable in soft $gamma$-rays, and the upper bounds on their flux and ejecta mass uncertainties cover several orders of magnitude. Within the framework of our hierarchical model, we can, nevertheless, infer tight upper bounds on the $mathrm{^{22}Na}$ ejecta masses, given all uncertainties from individual objects as well as diffuse emission, of $<2.0 times 10^{-7},mathrm{M_{odot}}$ (99.85th percentile). In the context of ONe nucleosynthesis, the $mathrm{^{22}Na}$ bounds are consistent with theoretical expectations, and exclude that most ONe novae happen on white dwarfs with masses around $1.35,mathrm{M_{odot}}$. The upper bounds from $mathrm{^{7}Be}$ are uninformative. From the combined ejecta mass estimate of $mathrm{^{22}Na}$ and its $beta^+$-decay, we infer a positron production rate of $<5.5 times 10^{42},mathrm{e^+,s^{-1}}$, which would make at most 10% of the total annihilation rate in the Milky Way.
Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 A by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 A is photopumped by He-like Na X at 11.003 A, which predicts significant intensity enhancement in the Ne IX 82.76 A transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially-unresolved, astronomical sources.
We examine the cosmic-ray protons (CRp) accelerated at collisionless shocks in galaxy clusters using cosmological structure formation simulations. We find that in the intracluster medium (ICM) within the virial radius of simulated clusters, only $sim7$% of shock kinetic energy flux is dissipated by the shocks that are expected to accelerate CRp, that is, supercritical, quasi-parallel ($Q_parallel$) shocks with sonic Mach number $M_sge2.25$. The rest is dissipated at subcritical shocks and quasi-perpendicular shocks, both of which may not accelerate CRp. Adopting the diffusive shock acceleration (DSA) model recently presented in Ryu et al. (2019), we quantify the DSA of CRp in simulated clusters. The average fraction of the shock kinetic energy transferred to CRp via DSA is assessed at $sim(1-2)times10^{-4}$. We also examine the energization of CRp through reacceleration using a model based on the test-particle solution. Assuming that the ICM plasma passes through shocks three times on average through the history of the universe and that CRp are reaccelerated only at supercritical $Q_parallel$-shocks, the CRp spectrum flattens by $sim0.05-0.1$ in slope and the total amount of CRp energy increases by $sim40-80$% from reacceleration. We then estimate diffuse $gamma$-ray and neutrino emissions, resulting from inelastic collisions between CRp and thermal protons. The predicted $gamma$-ray emissions from simulated clusters lie mostly below the upper limits set by Fermi-LAT for observed clusters. The neutrino fluxes towards nearby clusters would be $lesssim10^{-4}$ of the IceCube flux at $E_{ u}=1$ PeV and $lesssim10^{-6}$ of the atmospheric neutrino flux in the energy range of $E_{ u}leq1$ TeV.