Do you want to publish a course? Click here

Imaging and Spatially Resolved Spectroscopy of AFGL 2688 in the Thermal Infrared Region

56   0   0.0 ( 0 )
 Added by Miwa Goto
 Publication date 2002
  fields Physics
and research's language is English
 Authors M. Goto




Ask ChatGPT about the research

We present ground-based high-resolution (~0.3) imaging of AFGL 2688 at L (3.8 um) and M(4.7um). A wealth of structure in the central region is revealed due to less extinction in the thermal infrared. A clear border in the southern lobe at L corresponds to the edge of the heavily obscured region in visible, indicating there is a dense material surrounding the central region. The images also show a narrow dark lane oriented to 140 deg east of north with the normal at 50 deg. The normal position angle is inconsistent with the optical polar axis (PA = 15 deg), but is aligned to the high-velocity CO components found in the radio wavelength observations. The central star remains invisible at L and M. Several clumpy regions in the north lobe dominate in L and M luminosity. In particular a pointlike source (peak A) at 0.5 northeast of the center of the nebula exhibits the highest surface brightness with a very red spectral energy distribution (SED). Based on the almost identical SED as adjacent regions, we suggest that the pointlike source is not self-luminous, as was proposed, but is a dense dusty blob reflecting thermal emission from the central star. We also present spatially resolved slit spectroscopy of the bright dusty blobs. An emission feature at 3.4 um as well as at 3.3 um is detected everywhere within our field of view. There is no spatial variation in the infrared emission feature (IEF) throughout the observed area (0.2-1.5, or 240-1800 AU from the central source). The constant flux ratio of the emission feature relative to the continuum is consistent with the view that the blobs are mostly reflecting the light from the central star in the 3 um region.

rate research

Read More

IRAS19410+2336 is a young massive star forming region with an intense outflow activity. We present here spatially resolved NIR spectroscopy which allows us to verify whether the H2 emission detected in this object originates from thermal emission in shock fronts or from fluorescence excitation by non-ionizing UV photons. Moreover, NIR spectroscopy also offers the possibility of studying the characteristics of the putative driving source(s) of the H2 emission by the detection of photospheric and circumstellar spectral features, and of the environmental conditions (e.g. extinction). We obtained long-slit, intermediate-resolution, NIR spectra of IRAS19410+2336 using LIRIS. As a complement, we also obtained J, H and K_s images with the Las Campanas 2.5m Du Pont Telescope, and archival mid-infrared (MIR) Spitzer images at 3.6, 4.5, 5.8 and 8.0 um. We confirm the shocked nature of the H2 emission, with an excitation temperature of about 2000 K. We have also identified objects with very different properties and evolutionary stages in IRAS19410+2336. The most massive source at millimeter wavelengths, mm1, with a mass of a few tens of solar masses, has a bright NIR (and MIR) counterpart. This suggests that emission is leaking at these wavelengths. The second most massive millimeter source, mm2, is only detected at lambda > 6 um, suggesting that it could be a high-mass protostar still in its main accretion phase. The NIR spectra of some neighboring sources show CO first-overtone bandhead emission which is associated with neutral material located in the inner regions of the circumstellar environment of YSOs.
100 - B. Stoib , S. Filser , J. Stotzel 2014
We review the Raman shift method as a non-destructive optical tool to investigate the thermal conductivity and demonstrate the possibility to map this quantity with a micrometer resolution by studying thin film and bulk materials for thermoelectric applications. In this method, a focused laser beam both thermally excites a sample and undergoes Raman scattering at the excitation spot. The temperature dependence of the phonon energies measured is used as a local thermometer. We discuss that the temperature measured is an effective one and describe how the thermal conductivity is deduced from single temperature measurements to full temperature maps, with the help of analytical or numerical treatments of heat diffusion. We validate the method and its analysis on 3- and 2-dimensional single crystalline samples before applying it to more complex Si-based materials. A suspended thin mesoporous film of phosphorus-doped laser-sintered Si78Ge22 nanoparticles is investigated to extract the in-plane thermal conductivity from the effective temperatures, measured as a function of the distance to the heat sink. Using an iterative multigrid Gauss-Seidel algorithm the experimental data can be modelled yielding a thermal conductivity of 0.1 W/m K after normalizing by the porosity. As a second application we map the surface of a phosphorus-doped 3-dimensional bulk-nanocrystalline Si sample which exhibits anisotropic and oxygen-rich precipitates. Thermal conductivities as low as 11 W/m K are found in the regions of the precipitates, significantly lower than the 17 W/m K in the surrounding matrix. The present work serves as a basis to more routinely use the Raman shift method as a versatile tool for thermal conductivity investigations, both for samples with high and low thermal conductivity and in a variety of geometries.
We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude that shocks in the outflow regions have no measurable influence on the H_2 emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little variations across the plane, indicating that the dominant stellar population is evolved (5 - 6 Myr) and well distributed. There is a slight increase of the ratio with distance from the galactic plane of M82 which we attribute to a decrease in gas density. Our observations indicate that the star formation rate has decreased significantly in the last 5 Myr. The quantities of dust and molecular gas in the central area of the galaxy argue against starvation and for negative feedback processes, observable through the strong extra-planar outflows.
50 - F. Gourgeot , B. Carry , C. Dumas 2016
The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity. The dwarf planet (136108) Haumea is among the largest TNOs and displays a highly elongated shape and hosts two moons, covered with crystalline water ice like Hamuea. Haumea is also the largest member of the sole TNO family known to date. A catastrophic collision is likely responsible for its unique characteristics. We report here on the analysis of a new set of observations of Haumea obtained with SINFONI at the ESO VLT. Combined with previous data, and using light-curve measurements in the optical and far infrared, we carry out a rotationally resolved spectroscopic study of the surface of Haumea. We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the Dark Red Spot (DRS), and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the remaining part of the surface. We also present the results of applying Hapke modeling to our data set. The best spectral fit is obtained with a mixture of crystalline water ice (grain sizes smaller than 60 micron) with a few percent of amorphous carbon. Improvements to the fit are obtained by adding ~10% of amorphous water ice. Additionally, we used the IFU-reconstructed images to measure the relative astrometric position of the largest satellite Hi`iaka and determine its orbital elements. An orbital solution was computed with our genetic-based algorithm GENOID and our results are in full agreement with recent results.
Spatially resolved emission-line spectroscopy is a powerful tool to determine the physical conditions in the narrow-line region (NLR) of active galactic nuclei (AGNs). We recently used optical long-slit spectroscopy to study the NLRs of a sample of six Seyfert-2 galaxies. We have shown that such an approach, in comparison to the commonly used [OIII] narrow-band imaging alone, allows us to probe the size of the NLR in terms of AGN photoionisation. Moreover, several physical parameters of the NLR can be directly accessed. We here apply the same methods to study the NLR of six Seyfert-1 galaxies and compare our results to those of Seyfert-2 galaxies. We employ diagnostically valuable emission-line ratios to determine the physical properties of the NLR, including the core values and radial dependencies of density, ionisation parameter, and reddening. Tracking the radial change of emission-line ratios in diagnostic diagrams allows us to measure the transition between AGN-like and HII-like line excitation, and thus we are able to measure the size of the NLR. In the diagnostic diagrams, we find a transition between line ratios falling in the AGN regime and those typical for HII regions in two Seyfert-1 galaxies, thus determining the size of the NLR. The central electron temperature and ionisation parameter are in general higher in type-1 Seyferts than in type 2s. In almost all cases, both electron density and ionisation parameter decrease with radius. In general, the decrease is faster in Seyfert-1 galaxies than in type 2s. In several objects, the gaseous velocity distribution is characteristic for rotational motion in an (inclined) emission-line disk in the centre. We give estimates of the black hole masses. We discuss our findings in detail for each object.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا