Do you want to publish a course? Click here

Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82

363   0   0.0 ( 0 )
 Added by Pedro Beir\\~ao
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude that shocks in the outflow regions have no measurable influence on the H_2 emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little variations across the plane, indicating that the dominant stellar population is evolved (5 - 6 Myr) and well distributed. There is a slight increase of the ratio with distance from the galactic plane of M82 which we attribute to a decrease in gas density. Our observations indicate that the star formation rate has decreased significantly in the last 5 Myr. The quantities of dust and molecular gas in the central area of the galaxy argue against starvation and for negative feedback processes, observable through the strong extra-planar outflows.



rate research

Read More

We have mapped the superwind/halo region of the nearby starburst galaxy M82 in the mid-infrared with $Spitzer-IRS$. The spectral regions covered include the H$_2 S(1)-S(3)$, [NeII], [NeIII] emission lines and PAH features. We estimate the total warm H$_2$ mass and the kinetic energy of the outflowing warm molecular gas to be between $M_{warm}sim5-17times10^6$ M$_{odot}$ and $E_{K}sim6-20times10^{53}$ erg. Using the ratios of the 6.2, 7.7 and 11.3 micron PAH features in the IRS spectra, we are able to estimate the average size and ionization state of the small grains in the superwind. There are large variations in the PAH flux ratios throughout the outflow. The 11.3/7.7 and the 6.2/7.7 PAH ratios both vary by more than a factor of five across the wind region. The Northern part of the wind has a significant population of PAHs with smaller 6.2/7.7 ratios than either the starburst disk or the Southern wind, indicating that on average, PAH emitters are larger and more ionized. The warm molecular gas to PAH flux ratios (H$_2/PAH$) are enhanced in the outflow by factors of 10-100 as compared to the starburst disk. This enhancement in the H$_2/PAH$ ratio does not seem to follow the ionization of the atomic gas (as measured with the [NeIII]/[NeII] line flux ratio) in the outflow. This suggests that much of the warm H$_2$ in the outflow is excited by shocks. The observed H$_2$ line intensities can be reproduced with low velocity shocks ($v < 40$ km s$^{-1}$) driven into moderately dense molecular gas ($10^2 <n_H < 10^4$ cm$^{-3}$) entrained in the outflow.
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
55 - M. Goto 2002
We present ground-based high-resolution (~0.3) imaging of AFGL 2688 at L (3.8 um) and M(4.7um). A wealth of structure in the central region is revealed due to less extinction in the thermal infrared. A clear border in the southern lobe at L corresponds to the edge of the heavily obscured region in visible, indicating there is a dense material surrounding the central region. The images also show a narrow dark lane oriented to 140 deg east of north with the normal at 50 deg. The normal position angle is inconsistent with the optical polar axis (PA = 15 deg), but is aligned to the high-velocity CO components found in the radio wavelength observations. The central star remains invisible at L and M. Several clumpy regions in the north lobe dominate in L and M luminosity. In particular a pointlike source (peak A) at 0.5 northeast of the center of the nebula exhibits the highest surface brightness with a very red spectral energy distribution (SED). Based on the almost identical SED as adjacent regions, we suggest that the pointlike source is not self-luminous, as was proposed, but is a dense dusty blob reflecting thermal emission from the central star. We also present spatially resolved slit spectroscopy of the bright dusty blobs. An emission feature at 3.4 um as well as at 3.3 um is detected everywhere within our field of view. There is no spatial variation in the infrared emission feature (IEF) throughout the observed area (0.2-1.5, or 240-1800 AU from the central source). The constant flux ratio of the emission feature relative to the continuum is consistent with the view that the blobs are mostly reflecting the light from the central star in the 3 um region.
190 - Ximena Mazzalay 2010
We present an analysis of STIS/HST optical spectra of a sample of ten Seyfert galaxies aimed at studying the structure and physical properties of the coronal-line region (CLR). The high-spatial resolution provided by STIS allowed us to resolve the CLR and obtain key information about the kinematics of the coronal-line gas, measure directly its spatial scale, and study the mechanisms that drive the high-ionisation lines. We find CLRs extending from just a few parsecs (~10 pc) up to 230 pc in radius, consistent with the bulk of the coronal lines (CLs) originating between the BLR and NLR, and extending into the NLR in the case of [FeVII] and [NeV] lines. The CL profiles strongly vary with the distance to the nucleus. We observed line splitting in the core of some of the galaxies. Line peak shifts, both red- and blue-shifts, typically reached 500 km/s, and even higher velocities (1000 km/s) in some of the galaxies. In general, CLs follow the same pattern of rotation curves as low-ionisation lines like [OIII]. From a direct comparison between the radio and the CL emission we find that neither the strength nor the kinematics of the CLs scale in any obvious and strong way with the radio jets. Moreover, the similarity of the flux distributions and kinematics of the CLs and low-ionisation lines, the low temperatures derived for the gas, and the success of photoionisation models to reproduce, within a factor of few, the observed line ratios, point towards photoionisation as the main driving mechanism of CLs.
IRAS19410+2336 is a young massive star forming region with an intense outflow activity. We present here spatially resolved NIR spectroscopy which allows us to verify whether the H2 emission detected in this object originates from thermal emission in shock fronts or from fluorescence excitation by non-ionizing UV photons. Moreover, NIR spectroscopy also offers the possibility of studying the characteristics of the putative driving source(s) of the H2 emission by the detection of photospheric and circumstellar spectral features, and of the environmental conditions (e.g. extinction). We obtained long-slit, intermediate-resolution, NIR spectra of IRAS19410+2336 using LIRIS. As a complement, we also obtained J, H and K_s images with the Las Campanas 2.5m Du Pont Telescope, and archival mid-infrared (MIR) Spitzer images at 3.6, 4.5, 5.8 and 8.0 um. We confirm the shocked nature of the H2 emission, with an excitation temperature of about 2000 K. We have also identified objects with very different properties and evolutionary stages in IRAS19410+2336. The most massive source at millimeter wavelengths, mm1, with a mass of a few tens of solar masses, has a bright NIR (and MIR) counterpart. This suggests that emission is leaking at these wavelengths. The second most massive millimeter source, mm2, is only detected at lambda > 6 um, suggesting that it could be a high-mass protostar still in its main accretion phase. The NIR spectra of some neighboring sources show CO first-overtone bandhead emission which is associated with neutral material located in the inner regions of the circumstellar environment of YSOs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا