Do you want to publish a course? Click here

Crystalline silicate dust around evolved stars I. The sample stars

81   0   0.0 ( 0 )
 Added by Frank Molster
 Publication date 2002
  fields Physics
and research's language is English
 Authors F.J. Molster




Ask ChatGPT about the research

This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Short and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength range. The spectra show the presence of broad 10 and 18 micron bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 micron forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 micron. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars.



rate research

Read More

66 - F.J. Molster 2002
This is the second paper in a series of three in which we present an exhaustive inventory of the 49 solid state emission bands observed in a sample of 17 oxygen-rich dust shells surrounding evolved stars. Most of these emission bands are concentrated in well defined spectral regions (called complexes). We define 7 of these complexes; the 10, 18, 23, 28, 33, 40 and 60 micron complex. We derive average properties of the individual bands. Comparison with laboratory data suggests that both olivines (Mg(2x)Fe(2-2x)SiO(4)) and pyroxenes (Mg(x)Fe(1-x)SiO(3)) are present, with x close to 1, i.e. the minerals are very Mg-rich and Fe-poor. This composition is similar to that seen in disks surrounding young stars and in the solar system comet Hale-Bopp. A significant fraction of the emission bands cannot be identified with either olivines or pyroxenes. Possible other materials that may be the carriers of these unidentified bands are briefly discussed. There is a natural division into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). In particular, stars with the 33.5 micron olivine band stronger than about 20 percent over continuum are invariably disk sources. Likewise, the 60 micron region is dominated by crystalline silicates in the disk sources, while it is dominated by crystalline H(2)O ice in the outflow sources. We show that the disk and outflow sources have significant differences in the shape of the emission bands. This difference must be related to the composition or grain shapes of the dust particles. The incredible richness of the crystalline silicate spectra observed by ISO allows detailed studies of the mineralogy of these dust shells, and is the origin and history of the dust.
76 - F.J. Molster 2002
We have carried out a quantitative trend analysis of the crystalline silicates observed in the ISO spectra of a sample of 14 stars with different evolutionary backgrounds. We have modeled the spectra using a simple dust radiative transfer model and have correlated the results with other known parameters. We confirm the abundance difference of the crystalline silicates in disk and in outflow sources, as found by Molster et al. (1999, Nature 401, 563). We found some indication that the enstatite over forsterite abundance ratio differs, it is slightly higher in the outflow sources with respect to the disk sources. It is clear that more data is required to fully test this hypothesis. We show that the 69.0 micron feature, attributed to forsterite, may be a very suitable temperature indicator. We found that the enstatite is more abundant than forsterite in almost all sources. The temperature of the enstatite grains is about equal to that of the forsterite grains in the disk sources but slightly lower in the outflow sources. Crystalline silicates are on average colder than amorphous silicates. This may be due to the difference in Fe content of both materials. Finally we find an indication that the ratio of ortho to clino enstatite, which is about 1:1 in disk sources, shifts towards ortho enstatite in the high luminosity (outflow) sources.
We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength band. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.
We observed mid-infrared (7.5-22 mum) spectra of AGB stars in the globular cluster 47 Tuc with the Spitzer telescope and find significant dust features of various types. Comparison of the characteristics of the dust spectra with the location of the stars in a logP-K-diagram shows that dust mineralogy and position on the AGB are related. A 13 mum feature is seen in spectra of low luminosity AGB stars. More luminous AGB stars show a broad feature at 11.5 mum. The spectra of the most luminous stars are dominated by the amorphous silicate bending vibration centered at 9.7 mum. For 47 Tuc AGB stars, we conclude that early on the AGB dust consisting primarily of Mg-, Al- and Fe oxides is formed. With further AGB evolution amorphous silicates become the dominant species.
We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $mu$m. This wavelength range covers the 69 $mu$m band of crystalline olivine ($text{Mg}_{2-2x}text{Fe}_{(2x)}text{SiO}_{4}$). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $dot M ge 10^{-5}$ M$_odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 $mu$m band of crystalline olivine ($text{Mg}_{(2-2x)}text{Fe}_{(2x)}text{SiO}_{4}$). The 69 $mu$m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 $mu$m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 $mu$m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا