Do you want to publish a course? Click here

The Chandra Deep Field South: the 1 Million Second

85   0   0.0 ( 0 )
 Added by Piero Rosati
 Publication date 2001
  fields Physics
and research's language is English
 Authors P.Rosati




Ask ChatGPT about the research

We present the main results from our 940 ksec observation of the Chandra Deep Field South (CDFS), using the source catalog described in an accompanying paper (Giacconi et al. 2001). We extend the measurement of source number counts to 5.5e-17 erg/cm^2/s in the soft 0.5-2 keV band and 4.5e-16 erg/cm^2/s in the hard 2-10 keV band. The hard band LogN-LogS shows a significant flattening (slope~=0.6) below ~1e-14 erg/cm^2/s, leaving at most 10-15% of the X-ray background (XRB) to be resolved, the main uncertainty lying in the measurement of the total flux of the XRB. On the other hand, the analysis in the very hard 5-10 keV band reveals a relatively steep LogN-LogS (slope ~=1.3) down to 1e-15 erg/cm^2/s. Together with the evidence of a progressive flattening of the average X-ray spectrum near the flux limit, this indicates that there is still a non negligible population of faint hard sources to be discovered at energies not well probed by Chandra, which possibly contribute to the 30 keV bump in the spectrum of the XRB. We use optical redshifts and identifications, obtained with the VLT, for one quarter of the sample to characterize the combined optical and X-ray properties of the CDFS sample. Different source types are well separated in a parameter space which includes X-ray luminosity, hardness ratio and R-K color. Type II objects, while redder on average than the field population, have colors which are consistent with being hosted by a range of galaxy types. Type II AGN are mostly found at z<~1, in contrast with predictions based on AGN population synthesis models, thus suggesting a revision of their evolutionary parameters.



rate research

Read More

173 - R. Giacconi , A. Zirm , J. Wang 2001
In this Paper we present the source catalog obtained from a 942 ks exposure of the Chandra Deep Field South (CDFS), using ACIS-I on the Chandra X-ray Observatory. Catalog generation proceeded simultaneously using two different methods; a method of our own design using a modified version of the SExtractor algorithm, and a wavelet transform technique developed specifically for Chandra observations. The detection threshold has been set in order to have less than 10 spurious sources, as assessed by extensive simulations. We subdivided the catalog into four sections. The primary list consists of objects common to the two detection methods. Two secondary lists contain sources which were detected by: 1) the SExtractor algorithm alone and 2) the wavelet technique alone. The fourth list consists of possible diffuse or extended sources. The flux limits at the aimpoint for the soft (0.5--2 keV) and hard (2--10 keV) bands are 5.5E-17 erg/s/cm^2 and 4.5E-16 erg/s/cm^2 respectively. The total number of sources is 346; out of them, 307 were detected in the 0.5--2 keV band, and 251 in the 2--10 keV band. We also present optical identifications for the catalogued sources. Our primary optical data is R band imaging to a depth of R~26.5 (Vega). We found that the R-band/Chandra offsets are small, ~1 arcsec. Coordinate cross-correlation finds 85% of the Chandra sources covered in R to have counterparts within the 3-sigma error box (>~1.5 arcsec depending on off-axis angle and signal-to-noise). The unidentified fraction of sources, approximately ~10--15 %, is close to the limit expected from the observed X-ray flux to R-band ratio distribution for the identified sample.
Deep radio observations at 1.4GHz for the Extended Chandra Deep Field South were performed in June through September of 2007 and presented in a first data release (Miller et al. 2008). The survey was made using six separate pointings of the Very Large Array (VLA) with over 40 hours of observation per pointing. In the current paper, we improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree and reaches a best rms sensitivity of 6 uJy and has a typical sensitivity of 7.4 uJy per 2.8 by 1.6 beam. We also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise along with information on source sizes and relevant pointing data. We discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications (Bonzini et al. 2012) are used to identify 17 likely multiple-component sources and arrive at a catalog of 883 radio sources, which is roughly double the number of sources contained in the first data release.
Wide-field surveys are a commonly-used method for studying thousands of objects simultaneously, to investigate, e.g., the joint evolution of star-forming galaxies and active galactic nuclei. VLBI observations can yield valuable input to such studies because they are able to identify AGN. However, VLBI observations of large swaths of the sky are impractical using standard methods, because the fields of view of VLBI observations are of the order of 10 or less. We have embarked on a project to carry out Very Long Baseline Array (VLBA) observations of all 96 known radio sources in one of the best-studied areas in the sky, the Chandra Deep Field South (CDFS). The challenge was to develop methods which could significantly reduce the amount of observing (and post-processing) time. We have developed an extension to the DiFX software correlator which allows one to correlate hundreds of positions within the primary beams. This extension enabled us to target many sources, at full resolution and high sensitivity, using only a small amount of observing time. The combination of wide fields-of-view and high sensitivity across the field in this survey is unprecedented. We have observed with the VLBA a single pointing containing the Chandra Deep Field South, in which 96 radio sources were known from previous observations with the ATCA. From our input sample, 20 were detected with the VLBA. The majority of objects have flux densities in agreement with arcsec-scale observations, implying that their radio emission comes from very small regions. One VLBI-detected object had earlier been classified as a star-forming galaxy. Comparing the VLBI detections to sources found in sensitive, co-located X-ray observations we find that X-ray detections are not a good indicator for VLBI detections. Wide-field VLBI survey science is now coming of age.
101 - F. Fiore , A. Grazian , P. Santini 2007
A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminositys in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24$mu$m to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them (80$pm15%$) are indeed likely to be highly obscured, Compton thick AGNs. The number of infrared selected, Compton thick AGNs with 5.8$mu$m luminosity higher than $10^{44.2}$ erg s$^{-1}$ turns out to be similar to that of X-ray selected, unobscured and moderately obscured AGNs with 2-10 keV luminosity higher than $10^{43}$ erg s$^{-1}$ in the redshift bin 1.2-2.6. This ``factor of 2 source population is exactly what it is needed to solve the discrepancies between model predictions and X-ray AGN selection.
511 - A. Weiss , A. Kovacs , K. Coppin 2009
We present a sensitive 870 micron survey of the Extended Chandra Deep Field South (ECDFS) using LABOCA on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30 x 30 field size of the ECDFS and has a uniform noise level of 1.2 mJy/beam. LESS is thus the largest contiguous deep submillimetre survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 SMGs detected with a significance level above 3.7 sigma. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs,optically bright AGN and massive K-band selected galaxies). The differential source counts in the full field are well described by a power law with a slope of alpha=-3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. The integrated 870 micron flux densities of our source-count models account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1. Assuming a power law dependence for the correlation function and a typical redshift distribution for the SMGs we derive a spatial correlation length of r_0=13+/-6 h^-1 Mpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا