Do you want to publish a course? Click here

Monthly 43 GHz VLBA Polarimetric Monitoring of 3C120 over 16 Epochs: Evidence for Trailing Shocks in a Relativistic Jet

346   0   0.0 ( 0 )
 Added by Jose L. Gomez
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a 16-month sequence of monthly polarimetric 43 GHz VLBA images of the radio galaxy 3C 120. The images probe the inner regions of the radio jet of this relatively nearby superluminal radio galaxy at a linear resolution of 0.07 $h_{65}^{-1}$ pc ($H_o= 65 h_{65}$ km s$^{-1}$ Mpc$^{-1}$). We follow the motion of a number of features with apparent velocities between 4.01$pm$0.08 and $5.82pm 0.13 h_{65}^{-1} c$. A new superluminal knot, moving at $4.29pm 0.16 h_{65}^{-1} c$, is observed to be ejected from the core at a time coincident with the largest flare ever observed for this source at millimeter wavelengths. Changes in the position angle of this component, as well as a progressive rotation of its magnetic polarization vector, suggest the presence of a twisted (resembling a helix in projection) configuration of the underlying jet magnetic field and jet geometry. We identify several knots that appear in the wake of the new superluminal component, moving at proper motions $sim 4$ times slower than any of the other moving knots observed in 3C 120. These features have properties similar to those of the ``trailing shocks seen in relativistic, time-dependent, hydrodynamical and emission simulations of compact jets. Such trailing compressions are triggered by pinch-mode jet-body instabilities caused by the propagation of a strong perturbation, which we associate with the new strong superluminal component.



rate research

Read More

We aim to better understand the dynamics within relativistic magneto-hydrodynamical flows in the extreme environment and close vicinity of supermassive black holes. To do so, we analyze the peculiar radio galaxy 3C 111, for which long-term polarimetric observations are available. We make use of the high spatial resolution of the VLBA network and the MOJAVE monitoring program, which provides high data quality also for single sources and allows us to study jet dynamics on parsec scales in full polarization with an evenly sampled time-domain. We additionally consider data from the IRAM 30-m Telescope as well as the SMA. Jet properties such as the electric vectors, the (polarized) flux density, feature size, and brightness temperature, describe a complex evolution of the polarized jet. The electric vector position angles (EVPAs) of features traveling down the jet perform a large and smooth rotation of $gtrsim 180^{circ}$ across a distance of about 20 pc. In contrast, the EVPAs are strongly variable within the first parsecs of the jet. We find a tendency towards transverse EVPAs across the jet with a local anomaly of aligned vectors in between. The transverse extent of the flow decreases coincident with a jump in brightness temperature around where we observe the EVPAs to turn into alignment with the jet flow. Also the gradients of the feature size and particle density with distance steepen in that region. We interpret the propagating polarized features with shocks and the observed local anomalies with the interaction of these shocks with a recollimation shock of the underlying flow. Together with a sheared magnetic field, this shock-shock interaction can explain the large rotation of the EVPA. The superimposed variability of the EVPAs close to the core is likely related to a clumpy Faraday screen, which also contributes significantly to the observed EVPA rotation in that region.
52 - T. Savolainen 2005
In this first of a series of papers describing polarimetric multifrequency Very Long Baseline Array (VLBA) monitoring of 3C 273 during a simultaneous campaign with the INTEGRAL gamma-ray satellite in 2003, we present 5 Stokes I images and source models at 7 mm. We show that a part of the inner jet (1-2 milliarcseconds from the core) is resolved in a direction transverse to the flow, and we analyse the kinematics of the jet within the first 10 mas. Based on the VLBA data and simultaneous single-dish flux density monitoring, we determine an accurate value for the Doppler factor of the parsec scale jet, and using this value with observed proper motions, we calculate the Lorentz factors and the viewing angles for the emission components in the jet. Our data indicates a significant velocity gradient across the jet with the components travelling near the southern edge being faster than the components with more northern path. We discuss our observations in the light of jet precession model and growing plasma instabilities.
152 - X.-P. Cheng , T. An , S. Frey 2020
We present the observational results from the 43-GHz Very Long Baseline Array (VLBA) observations of 124 compact radio-loud active galactic nuclei (AGNs) that were conducted between 2014 November and 2016 May. The typical dimensions of the restoring beam in each image are about 0.5 mas $times$ 0.2 mas. The highest resolution of 0.2 mas corresponds to a physical size of 0.02 pc for the lowest redshift source in the sample. The 43-GHz very long baseline interferometry (VLBI) images of 97 AGNs are presented for the first time. We study the source compactness on milli-arcsec (mas) and sub-mas scales, and suggest that 95 sources in our sample are suitable for future space VLBI observations. By analyzing our data supplemented with other VLBA AGN surveys from literature, we find that the core brightness temperature increases with increasing frequency below a break frequency ~ 7 GHz, and decreases between ~7--240~GHz but increases again above~240 GHz in the rest frame of the sources. This indicates that the synchrotron opacity changes from optically thick to thin. We also find a strong statistical correlation between radio and $gamma$-ray flux densities. Our correlation is tighter than those in literature derived from lower-frequency VLBI data, suggesting that the $gamma$-ray emission is produced more co-spatially with the 43-GHz VLBA core emission. This correlation can also be extrapolated to the un-beamed AGN population, implying that a universal $gamma$-ray production mechanism might be at work for all types of AGNs.
62 - E. Bon , S. Zucker , H. Netzer 2016
We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548. This includes 12 years of new unpublished observations (2003 to 2015). We compiled about 1600 H$beta$ spectra and analyzed the long-term spectral variations of the 5100 AA continuum and the H$beta$ line. Our analysis is based on standard procedures including the Lomb-Scargle method, which is known to be rather limited to such heterogeneous data sets, and new method developed specifically for this project that is more robust and reveals a $sim$5700 day periodicity in the continuum light curve, the H$beta$ light curve and the radial velocity curve of the red wing of the H$beta$ line. The data are consistent with orbital motion inside the broad emission line region of the source. We discuss several possible mechanisms that can explain this periodicity, including orbiting dusty and dust-free clouds, a binary black hole system, tidal disruption events, and the effect of an orbiting star periodically passing through an accretion disc.
174 - R. Lico , M. Giroletti 2012
We present a preliminary analysis of new high resolution radio observations of the nearby TeV blazar Markarian 421 (z=0.031). This study is part of an ambitious multifrequency campaign, with observations in sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). In this manuscript we consider only data obtained with the Very Long Baseline Array (VLBA) at seven epochs (one observation per month from January to July 2011) at 15 and 23.8 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. We identified 5-6 components which are consistent with being stationary during the 6-month period reported here. The aim is to try to shed light on questions such as the nature of radiating particles, the connection between radio and gamma-ray emission, the location of emitting regions and the origin of the flux variability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا