Do you want to publish a course? Click here

VLBA polarimetric monitoring of 3C 111

73   0   0.0 ( 0 )
 Added by Tobias Beuchert
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to better understand the dynamics within relativistic magneto-hydrodynamical flows in the extreme environment and close vicinity of supermassive black holes. To do so, we analyze the peculiar radio galaxy 3C 111, for which long-term polarimetric observations are available. We make use of the high spatial resolution of the VLBA network and the MOJAVE monitoring program, which provides high data quality also for single sources and allows us to study jet dynamics on parsec scales in full polarization with an evenly sampled time-domain. We additionally consider data from the IRAM 30-m Telescope as well as the SMA. Jet properties such as the electric vectors, the (polarized) flux density, feature size, and brightness temperature, describe a complex evolution of the polarized jet. The electric vector position angles (EVPAs) of features traveling down the jet perform a large and smooth rotation of $gtrsim 180^{circ}$ across a distance of about 20 pc. In contrast, the EVPAs are strongly variable within the first parsecs of the jet. We find a tendency towards transverse EVPAs across the jet with a local anomaly of aligned vectors in between. The transverse extent of the flow decreases coincident with a jump in brightness temperature around where we observe the EVPAs to turn into alignment with the jet flow. Also the gradients of the feature size and particle density with distance steepen in that region. We interpret the propagating polarized features with shocks and the observed local anomalies with the interaction of these shocks with a recollimation shock of the underlying flow. Together with a sheared magnetic field, this shock-shock interaction can explain the large rotation of the EVPA. The superimposed variability of the EVPAs close to the core is likely related to a clumpy Faraday screen, which also contributes significantly to the observed EVPA rotation in that region.



rate research

Read More

We present radio-to-optical data taken by the WEBT, supplemented by VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. We assemble multifrequency light curves with data from 30 ground-based observatories and the space-based instruments, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcsec, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. The IR-optical-UV continuum spectrum of the variable component corresponds to a power law with a constant slope of -1.6, while in the 2.4-10 keV X-ray band it varies in slope from -1.1 to -1.6. The steepest X-ray spectrum occurs at a flux minimum. During a decline in flux from maximum in late 2006, the optical and 43 GHz core polarization vectors rotate by ~300 degrees. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope -3.2 that is steepened to -4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ~20 pc past the 43 GHz core.
We present uniformly reprocessed and re-calibrated data from the RoboPol programme of optopolarimetric monitoring of active galactic nuclei (AGN), covering observations between 2013, when the instrument was commissioned, and 2017. In total, the dataset presented in this paper includes 5068 observations of 222 AGN with Dec > -25 deg. We describe the current version of the RoboPol pipeline that was used to process and calibrate the entire dataset, and we make the data publicly available for use by the astronomical community. Average quantities summarising optopolarimetric behaviour (average degree of polarization, polarization variability index) are also provided for each source we have observed and for the time interval we have followed it.
We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.
After three years of polarimetric monitoring of blazars, the RoboPol project has uncovered several key characteristics of polarimetric rotations in the optical for these most variable sources. The most important of these is that polarization properties of the synchrotron emission in the optical appear to be directly linked with gamma-ray activity. In this paper, we discuss the evidence for this connection, as well as the broader features of polarimetric behavior in blazars that are key in making progress with theoretical modeling of blazar emission.
We present a 16-month sequence of monthly polarimetric 43 GHz VLBA images of the radio galaxy 3C 120. The images probe the inner regions of the radio jet of this relatively nearby superluminal radio galaxy at a linear resolution of 0.07 $h_{65}^{-1}$ pc ($H_o= 65 h_{65}$ km s$^{-1}$ Mpc$^{-1}$). We follow the motion of a number of features with apparent velocities between 4.01$pm$0.08 and $5.82pm 0.13 h_{65}^{-1} c$. A new superluminal knot, moving at $4.29pm 0.16 h_{65}^{-1} c$, is observed to be ejected from the core at a time coincident with the largest flare ever observed for this source at millimeter wavelengths. Changes in the position angle of this component, as well as a progressive rotation of its magnetic polarization vector, suggest the presence of a twisted (resembling a helix in projection) configuration of the underlying jet magnetic field and jet geometry. We identify several knots that appear in the wake of the new superluminal component, moving at proper motions $sim 4$ times slower than any of the other moving knots observed in 3C 120. These features have properties similar to those of the ``trailing shocks seen in relativistic, time-dependent, hydrodynamical and emission simulations of compact jets. Such trailing compressions are triggered by pinch-mode jet-body instabilities caused by the propagation of a strong perturbation, which we associate with the new strong superluminal component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا