Do you want to publish a course? Click here

Clustering of Dark Matter Halos on the Light-cone

57   0   0.0 ( 0 )
 Added by Yasushi Suto
 Publication date 2001
  fields Physics
and research's language is English
 Authors Yasushi Suto




Ask ChatGPT about the research

A phenomenological model for the clustering of dark matter halos on the light-cone is presented. In particular, an empirical prescription for the scale-, mass-, and time-dependence of halo biasing is described in detail. A comparison of the model predictions against the light-cone output from the Hubble Volume $N$-body simulation indicates that the present model is fairly accurate for scale above $sim 5h^{-1}$Mpc. Then I argue that the practical limitation in applying this model comes from the fact that we have not yet fully understood what are clusters of galaxies, especially at high redshifts. This point of view may turn out to be too pessimistic after all, but should be kept in mind in attempting {it precision cosmology} with clusters of galaxies.



rate research

Read More

We investigate the clustering properties of high-redshift galaxies within three competing scenarios for assigning luminous galaxies to dark matter halos from N-body simulations: a one galaxy per massive halo model, a quiescent star formation model, and a collisional starburst model. We compare these models to observations of Lyman-Break galaxies at z~3$ With current data and the simple statistic used here, one cannot rule out any of these models, but we see potential for finding distinguishing features using statistics that are sensitive to the tails of the distribution, and statistics based on the number of multiple galaxies per halo, which we explore in an ongoing study.
168 - P. Colin 2003
We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses 10^7-10^9 Msun/h. We find that the density profiles of relaxed dwarf halos are well fitted by the NFW profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model while the latter is well fitted by a lognormal distribution with lambda_0 = 0.042 and sigma_lambda = 0.63. We estimate the distribution of concentrations for halos in mass range that covers six orders of magnitude from 10^7 Msun/h to 10^13} Msun/h, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z = 0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~ 35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6 x 10^9 Msun/h to 10^13 Msun/h and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just down-scal
We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>-1 and w<-1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. (2001) accurately predicts the median concentrations of haloes over the range of w, halo masses, and redshifts that we are capable of probing. We find that the Bullock et al. (2001) model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed sigma_8), w>-1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. Meanwhile w<-1 models help to reduce the apparent discrepancy. We confirm that the Jenkins et al. (2001) halo mass function provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w<-1.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitational contraction and collisional dissipation can significantly speed up the onset of gravothermal collapse, resulting in a steep inner density profile. For reasonable choices of model parameters controlling the dissipation, the collapse timescale can be a factor of 10-100 shorter than that predicted in purely elastic self-interacting dark matter. The effect is maximized when energy loss per collision is comparable to characteristic kinetic energy of dark matter particles in the halo. Our simulations provide guidance for testing the dissipative nature of dark matter with astrophysical observations.
We explore the phenomenon commonly known as halo assembly bias, whereby dark matter halos of the same mass are found to be more or less clustered when a second halo property is considered, for halos in the mass range $3.7 times 10^{11} ; h^{-1} mathrm{M_{odot}} - 5.0 times 10^{13} ; h^{-1} mathrm{M_{odot}}$. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if halos are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halos distance to a more massive neighbor. Halo samples selected by having high values of one of these properties therefore inherit a neighbor bias such that they are much more likely to be close to a much more massive neighbor. This neighbor bias largely accounts for the secondary bias seen in halos binned by mass and split by concentration or age. However, halos binned by other mass-like properties still show a secondary bias even when the neighbor bias is removed. The secondary bias of halos selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا