Narrow-band H-alpha+[NII] and broadband R images and surface photometry are presented for a sample of 29 bright (M_B < -18) isolated S0-Scd galaxies within a distance of 48 Mpc. These galaxies are among the most isolated nearby spiral galaxies of their Hubble classifications as determined from the Nearby Galaxies Catalog (Tully 1987a).
The massive star formation properties of 55 Virgo Cluster and 29 isolated S0-Scd bright (M(B) < -18) spiral galaxies are compared via analyses of R and Halpha surface photometry and integrated fluxes as functions of Hubble type and central R light concentration (bulge-to-disk ratio). In the median, the total normalized massive star formation rates (NMSFRs) in Virgo Cluster spirals are reduced by factors up to 2.5 compared to isolated spiral galaxies of the same type or concentration, with a range from enhanced (up to 2.5 times) to strongly reduced (up to 10 times). Within the inner 30% of the optical disk, Virgo Cluster and isolated spirals have similar ranges in NMSFRs, with similar to enhanced median NMSFRs for Virgo galaxies. NMSFRs in the outer 70% of the optical disk are reduced in the median by factors up to 9 for Virgo Cluster spirals, with more severely reduced star formation at progressively larger disk radii. Thus the reduction in total star formation of Virgo Cluster spirals is caused primarily by spatial truncation of the star-forming disks. The correlation between HI deficiency and R light central concentration is much weaker than the correlation between HI deficiency and Hubble type. ICM-ISM stripping of the gas from spiral galaxies is likely responsible for the truncated star-forming disks of Virgo Cluster spirals. This effect may be responsible for a significant part of the morphology-density relationship.
We present the Fabry-Perot observations obtained for a new set of 108 galaxies that completes the GHASP survey (Gassendi HAlpha survey of SPirals). The GHASP survey consists of 3D Ha data cubes for 203 spiral and irregular galaxies, covering a large range in morphological types and absolute magnitudes, for kinematics analysis. The GHASP sample is by now the largest sample of Fabry-Perot data ever published. We have derived Ha data cubes from which are computed Ha maps, radial velocity fields as well as residual velocity fields, position-velocity diagrams, rotation curves and the kinematical parameters for almost all galaxies. Original improvements in the determination of the kinematical parameters, rotation curves and their uncertainties have been implemented in the reduction procedure. This new method is based on the whole 2D velocity field and on the power spectrum of the residual velocity fieldrather than the classical method using successive crowns in the velocity field. Among the results, we point out that morphological position angles have systematically higher uncertainties than kinematical ones, especially for galaxies with low inclination. Morphological inclination of galaxies having no robust determination of their morphological position angle cannot be constrained correctly. Galaxies with high inclination show a better agreement between their kinematical inclination and their morphological inclination computed assuming a thin disk. The consistency of the velocity amplitude of our rotation curves have been checked using the Tully-Fisher relationship. Our data are in good agreement with previous determinations found in the literature. Nevertheless, galaxies with low inclination have statistically higher velocities than expected and fast rotators are less luminous than expected.
We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5-meter telescope, to seek kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. 2-Dimensional maps of the stellar velocity $V$, and stellar velocity dispersion $sigma$ and the ionized gas velocity (H$beta$ and/or [ion{O}{3}]) are presented for galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axis are found in several galaxies. While in some cases this is due to a bar, in other cases it seems associated with a gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. We compute for all galaxies the angular momentum parameter $lambda_{rm R}$. An evaluation of the galaxies in the $lambda_{rm R}$-ellipticity plane shows that all but 2 of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact H$alpha$ morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.
R. A. Koopmann
,J. D. P. Kenney
,J. Young
.
(2001)
.
"An Atlas of Halpha and R Images and Radial Profiles of 63 Bright Virgo Cluster Spiral Galaxies"
.
Rebecca A. Koopmann
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا