Do you want to publish a course? Click here

Integral-Field Stellar and Ionized Gas Kinematics of Peculiar Virgo Cluster Spiral Galaxies

162   0   0.0 ( 0 )
 Added by Juan Cort\\'es
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5-meter telescope, to seek kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. 2-Dimensional maps of the stellar velocity $V$, and stellar velocity dispersion $sigma$ and the ionized gas velocity (H$beta$ and/or [ion{O}{3}]) are presented for galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axis are found in several galaxies. While in some cases this is due to a bar, in other cases it seems associated with a gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. We compute for all galaxies the angular momentum parameter $lambda_{rm R}$. An evaluation of the galaxies in the $lambda_{rm R}$-ellipticity plane shows that all but 2 of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact H$alpha$ morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.



rate research

Read More

Aims. This work considers the Virgo cluster of galaxies, focusing on its structure, kinematics, and morphological landscape. Our principal aim is to estimate the virial mass of the cluster. For this purpose, we present a sample of 1537 galaxies with radial velocities $V_{LG} < 2600$~km~s$^{-1}$ situated within a region of $Delta{}SGL = 30^circ$ and $Delta{}SGB = 20^circ$ around M87. About half of the galaxies have distance estimates. Methods. We selected 398 galaxies with distances in a $(17pm5)$~Mpc range. Based on their 1D and 2D number-density profiles and their radial velocity dispersions, we made an estimate for the virial mass of the Virgo cluster. Results. We identify the infall of galaxies towards the Virgo cluster core along the Virgo Southern Extension filament. From a 1D profile of the cluster, we obtain the virial mass estimate of $(6.3pm0.9) times 10^{14} M_odot, $ which is in tight agreement with its mass estimate via the external infall pattern of galaxies. Conclusions. We conclude that the Virgo cluster outskirts between the virial radius and the zero-velocity radius do not contain significant amounts of dark matter beyond the virial radius.
149 - Bodo Ziegler Vienna 2014
We investigate the evolution of the Tully-Fisher relation out to z=1 with 137 emission-line galaxies in the field that display a regular rotation curve. They follow a linear trend with lookback time being on average brighter by 1.1Bmag and 60% smaller at z=1. For a subsample of 48 objects with very regular gas kinematics and stellar structure we derive a TF scatter of 1.15mag, which is two times larger than local samples exhibit. This is probably due to modest variations in their star formation history and chemical enrichment. In another study of 96 members of Abell 901/902 at z=0.17 and 86 field galaxies with similar redshifts we find a difference in the TFR of 0.42mag in the B-band but no significant difference in stellar mass. Comparing specifically red spirals with blue ones in the cluster, the former are fainter on average by 0.35Bmag and have 15% lower stellar masses. This is probably due to star formation quenching caused by ram-pressure in the cluster environment. Evidence for this scenario comes from strong distortions of the gas disk of red spirals that have at the same time a very regular stellar disk structure.
132 - S. Kendrew 2016
We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z=2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instruments capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z=2-4, assuming different light profiles; for this population we estimate integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M_star > 10^10.7 solar masses. Second, we use HSIM to perform a mock observation of a typical star-forming 10^10 solar mass galaxy at z=3 generated from the high-resolution cosmological simulation NutFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-hour observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONIs performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.
We observed twelve nearby HI -detected early-type galaxies (ETGs) of stellar mass $sim 10^{10}Modot leq M_* leq sim 10^{11}Modot$ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionised gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly-used H$beta$, Fe5015, Mg, b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H$beta$ gradients and negative Mg, b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.
(Abridged) We trace the interaction processes of galaxies at intermediate redshift by measuring the irregularity of their ionized gas kinematics, and investigate these irregularities as a function of the environment (cluster versus field) and of morphological type (spiral versus irregular). Our sample consists of 92 distant galaxies. 16 cluster (z~0.3 and z~0.5) and 29 field galaxies (mean z=0.44) of these have velocity fields with sufficient signal to be analyzed. We find that the fraction of galaxies that have irregular gas kinematics is remarkably similar in galaxy clusters and in the field at intermediate redshifts. The distribution of the field and cluster galaxies in (ir)regularity parameters space is also similar. On the other hand galaxies with small central concentration of light, that we see in the field sample, are absent in the cluster sample. We find that field galaxies at intermediate redshifts have more irregular velocity fields as well as more clumpy and less centrally concentrated light distributions than their local counterparts. Comparison with a SINS sample of 11 z ~ 2 galaxies shows that these distant galaxies have more irregular gas kinematics than our intermediate redshift cluster and field sample. We do not find a dependence of the irregularities in gas kinematics on morphological type. We find that two different indicators of star formation correlate with irregularity in the gas kinematics. More irregular gas kinematics, also more clumpy and less centrally concentrated light distributions of spiral field galaxies at intermediate redshifts in comparison to their local counterparts indicate that these galaxies are probably still in the process of building their disks via mechanisms such as accretion and mergers. On the other hand, they have less irregular gas kinematics compared to galaxies at z ~ 2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا