Do you want to publish a course? Click here

RX J0848+4456: Disentangling a Moderate Redshift Cluster

50   0   0.0 ( 0 )
 Added by Brad Holden
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a multi-wavelength study of RX J0848+4456, a cluster of galaxies discovered through X-ray emission in the ROSAT Deep Cluster Survey. Our observations consist of WFPC2 imaging, optical spectra, and X-ray data collected with the Chandra observatory. We find that RX J0848+4456 consists of an X-ray emitting cluster of galaxies at a redshift of z=0.570 and a group at slightly lower redshift, z=0.543, with little X-ray emission. This lower redshift system, however, is a gravitational lens, with the lensed galaxy an unusual AGN or star-forming system at z=3.356. The cluster has an X-ray temperature of kT = 3.6 +/- 0.4 keV, a bolometric luminosity of 1.0e44 +/- 0.3e44 erg/s and a velocity dispersion of 670 +/- 50 km/s. These values all agree with the low redshift correlations for clusters of galaxies, implying a relaxed system with the ICM in equilibrium with the dark matter potential. The lower redshift group of galaxies at z=0.543 has, at most 1/5, more likely 1/10, of the X-ray luminosity of RX J0848+4456. Despite being a gravitational lens, this is a low mass system, with an X-ray temperature of kT = 2.3 +0.5 -0.4 keV and a velocity dispersion of only 430 +/- 20 km/s. Our observations show the importance of detailed studies of clusters of galaxies when using them as probes of cosmological mass functions.



rate research

Read More

Fossil galaxy groups are spatially extended X-ray sources with X-ray luminosities above L_X,bol > 10^42 h_50^-2 ergs s^-1 and a central elliptical galaxy dominating the optical, the second-brightest galaxy being at least 2 magnitudes fainter in the R band. Whether these systems are a distinct class of objects resulting from exceptional formation and evolution histories is still unclear, mainly due to the small number of objects studied so far, mostly lacking spectroscopy of group members for group membership confirmation and a detailed kinematical analysis. To complement the scarce sample of spectroscopically studied fossils down to their faint galaxy populations, the fossil candidate RX J1548.9+0851 (z=0.072) is studied in this work. Our results are compared with existing data from fossils in the literature. We use ESO VLT VIMOS multi-object spectroscopy to determine redshifts of the faint galaxy population and study the luminosity-weighted dynamics and luminosity function of the system. The full-spectrum fitting package ULySS is used to determine ages and metallicities of group members. VIMOS imaging data are used to study the morphology of the central elliptical. We identify 40 group members spectroscopically within the central ~300 kpc of the system and find 31 additional redshifts from the literature, resulting in a total number of 54 spectroscopically confirmed group members within 1 Mpc. RX J1548.9+0851 is made up of two bright ellipticals in the central region with a magnitude gap of m_1,2 = 1.34 in the SDSS r band leaving the definition of RX J1548.9+0851 being a fossil to the assumption of the virial radius. We find a luminosity-weighted velocity dispersion of 568 km s^-1 and a mass of ~2.5 x 10^14 M_sun for the system confirming previous studies that revealed fossils to be massive. (abridged)
410 - Matthew Hayes 2012
Laporte et al. (2011) reported a very high redshift galaxy candidate: a lensed J-band dropout (A2667-J1). J1 has a photometric redshift of z=9.6-12, the probability density function for which permits no low or intermediate z solution. We here report new spectroscopic observations of this galaxy with VLT/XShooter, which show clear [OIII]5007AA, Ly-alpha, H-alpha, and H-beta emission and place the galaxy firmly at z=2.082. The oxygen lines contribute only ~25% to the H-band flux, and do not significantly affect the dropout selection of J1. After correcting the broadband fluxes for line emission, we identify two roughly equally plausible natures for A2667-J1: either it is young heavily reddened starburst, or a maximally old system with a very pronounced 4000AA break, upon which a minor secondary burst of star formation is superimposed. Fits show that to make a 3 sigma detection of this object in the B-band (V-band), imaging of depth AB=30.2 (29.5) would be required - despite the relatively bright NIR magnitude, we would need optical data of equivalent depth to the Hubble Ultra Deep Field to rule out the mid-z solution on purely photometric grounds. Assuming that this stellar population can be scaled to the NIR magnitudes of recent HST/WFC3 IR-selected galaxies, we conclude that infeasibly deep optical data AB~32 would be required for the same level of security. There is a population of galaxies at z~2 with continuum colours alone that mimic those of our z=7-12 candidates.
We present the results of Butcher-Oemler-style analysis of three moderate- redshift (0.1<z<0.2) clusters which have bimodal X-ray surface brightness profiles. We find that at least two of these clusters exhibit unusually high fractions of blue galaxies as compared to clusters at comparable redshifts studied by Butcher and Oemler (1984). This implies that star formation is occurring in a high fraction of the galaxies in the two clusters. Our results are consistent with hierarchical clustering models in which subcluster- subcluster mergers create shocks in the intracluster medium. The shocks, in turn, induce simultaneous starbursts in a large fraction of cluster galaxies. Our study therefore lends weight to the hypothesis that the Butcher-Oemler effect is an environmental, as well as evolutionary, phenomenon.
We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescription for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
From a search of a ~ 2400 square degree region covered by both the SDSS and UKIDSS databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser-guide-star adaptive-optics imaging. For 4 of the 5 galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find 2 galaxies that are consistent with having formed > 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا